Since the 1950s, sprinkler irrigation technology in China has gradually realized the localization of key equipment through continuous practice and innovation. A large number of key problems in system design and operation management have been studied and addressed. Remarkable water-saving and yield increase * Développement de la technologie d'irrigation des arroseurs en Chine.
Abstract:In-stream structures contribute greatly to the biodiversity in streams and play an important role in restoring and protecting rivers. They usually have complex geometries. To evaluate their impact and effectiveness, computational models are increasingly used. However, how to faithfully represent them in computer models remains a challenge. Often, simplifications have to be made. This work evaluated the effects of geometric simplification of an example in-stream structure, an engineered log jam (ELJ), in computational models. Three different representations were considered, namely full resolution, the porous media model and the solid barrier model. The turbulent flow was resolved with large eddy simulation (LES). First, the simulations were validated with a physical experiment in a flume. Then, the results from the three models were compared and analyzed on various aspects related to the stability and functionalities of the structures. Unsurprisingly, it is found that the porous media model and the solid barrier model, which are computationally economic, can describe the flow dynamics only to some extent. From the calibration of drag force and wake length, we found that the equivalent grain size d 50 in the porosity model should scale as the key element diameter for the simulated ELJ. A wake length scale analysis was performed for the semi-bounded flow around this in-stream structure near the bank. The length estimator in the literature for unbounded vegetation patches can be used with modifications. The results also show that the flow passing through the porous in-stream structure has a significant impact on mean velocity, turbulence kinetic energy, sediment transport capacity and integral wake length. Since geometrically-fully-resolved simulations are not currently feasible for engineering practices, the following suggestions are made based on this study. If the near-field and wake are important for the purpose of the structure, the well-calibrated porosity model seems to perform better than the solid barrier model. However, care needs to be taken when interpreting the results because this work also identified substantial loss of physical information with the porosity model. When the emphasis is the far field away from the structure, both the porosity model and the solid barrier model give comparable results.
Droplet shear stress is the main cause of soil erosion under sprinkler irrigation, and the effect of droplet impact angle on the shear stress distribution cannot be ignored. In this study, a ball-driven sprinkler was selected to investigate the radial distributions of droplet impact angles under three operating pressures (0.25, 0.30, and 0.35 MPa) and two nozzle diameters (1.9 and 2.2 mm) which are commonly used in agricultural irrigation. The effect of droplet impact angles on the distances from the sprinkler, droplet impact velocities, and shear stresses were analyzed by a 2DVD instrument. Irrespective of the nozzle diameter or operating pressure, the droplet velocities and impact angles near the sprinkler were distributed at 1.0–5.5 m s−1 and 70–90°, respectively, and the droplet shear stress increased with the distance from the sprinkler. Suitable operating pressure and distance from the sprinkler significantly reduced the droplet shear stress. Although the nozzle diameter had a certain effect on the maximum shear stress, the overall effect was insignificant. We developed the models for the radial distribution of droplet shear stresses, which were in good agreement with the measurement. This study proposes a new method for accurately predicating the soil erosion under sprinkler irrigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.