Circularly polarized photodetectors require chiral light absorption materials with high sensing efficiency and low costs. Here readily accessible point chirality has been introduced to dicyanostilbenes as the chiral source, facilitating remote chirality transfer to the π‐aromatic core by cooperative supramolecular polymerization. The single‐handed supramolecular polymers display powerful circularly polarized photodetection capability with a dissymmetry factor value as high as 0.83, superior to those of π‐conjugated small molecules and oligomers. Strong chiral amplification occurs between the enantiopure sergeants and the achiral soldiers. The resulting supramolecular copolymers exhibit comparable photodetection efficiency to those of the homopolymeric ones, with a 90 % decrease in the enantiopure compound consumption. Therefore, cooperative supramolecular polymerization provides an effective yet economical avenue toward circularly polarized photodetection applications.
Efficient synthesis of cyclic polymers has received much attention in polymer chemistry field. Although photochemical cycloaddition of terminal p-bonded units provides a plausible way toward cyclic polymerization, it remains challenging to avoid side reactions by manipulating the reaction selectivity. Herein supramolecular confinement has been developed as a promising strategy to address this issue, by introducing highly directional hydrogen bonds to the photoreactive cyanostilbenes. The cyanostilbenes units on both ends of a telechelic macromonomer are orientationally aligned with high local concentrations, yielding [2+2] photo-cycloaddition products upon 430 nm light irradiation. It leads to the formation of cyclic polymers in the self-assembled state, in stark contrast to Z-E isomerization of cyanostilbenes in the monomeric state. Overall, supramolecular confinement effect exemplified in the current study provides new avenues toward cyclic topological polymers with high synthetic efficiency.
The self-assembly of π-aromatic organic and organometallic molecules into long-range-ordered supramolecular polymers is dictated by a variety of molecular parameters and external conditions. In this work, structural isomerism, representing one of the potent molecular parameters, has been investigated to modulate the self-assembly behaviors. Two platinum(II) acetylide-based structural isomers, with different N-hexyl substitution positions on the inner benzotriazole core, have been designed. Thanks to the synergistic participation of hydrogen-bonding and π−π-stacking interactions, both platinum(II) acetylide-based compounds are prone to forming supramolecular polymers via a nucleation− elongation cooperative mechanism in apolar media. Thermal hysteresis phenomena are observed for both compounds, suggesting the different supramolecular polymerization pathways upon cooling and heating. Remarkably, in addition to the spectroscopic difference, these two supramolecular polymers display distinct thermostability and rheological moduli, ascribing to different binding enthalpies of the neighboring monomers. Overall, it is evident that a minor variation at the molecular level brings huge differences to the properties of long-range-ordered supramolecular polymers. The current study illustrates the importance of the structural isomerism effect for the rational design of π-functional supramolecular materials.
Efficient synthesis of cyclic polymers has received much attention in polymer chemistry field. Although photochemical cycloaddition of terminal p-bonded units provides a plausible way toward cyclic polymerization, it remains challenging to avoid side reactions by manipulating the reaction selectivity. Herein supramolecular confinement has been developed as a promising strategy to address this issue, by introducing highly directional hydrogen bonds to the photoreactive cyanostilbenes. The cyanostilbenes units on both ends of a telechelic macromonomer are orientationally aligned with high local concentrations, yielding [2+2] photo-cycloaddition products upon 430 nm light irradiation. It leads to the formation of cyclic polymers in the self-assembled state, in stark contrast to Z-E isomerization of cyanostilbenes in the monomeric state. Overall, supramolecular confinement effect exemplified in the current study provides new avenues toward cyclic topological polymers with high synthetic efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.