An adaptive global sliding mode control (AGSMC) using RBF neural network (RBFNN) is proposed for the system identification and tracking control of micro-electro-mechanical system (MEMS) gyroscope. Firstly, a new kind of adaptive identification method based on the global sliding mode controller is designed to update and estimate angular velocity and other system parameters of MEMS gyroscope online. Moreover, the output of adaptive neural network control is used to adjust the switch gain of sliding mode control dynamically to approach the upper bound of unknown disturbances. In this way, the switch item of sliding mode control can be converted to the output of continuous neural network which can weaken the chattering in the sliding mode control in contrast to the conventional fixed gain sliding mode control. Simulation results show that the designed control system can get satisfactory tracking performance and effective estimation of unknown parameters of MEMS gyroscope.
In this paper, a dynamic global proportional integral derivative (PID) sliding mode controller based on an adaptive radial basis function (RBF) neural estimator is developed to guarantee the stability and robustness in the presence of a lumped uncertainty for a micro electromechanical systems (MEMS) gyroscope. This approach gives a new dynamic global PID sliding mode manifold, which not only enables system trajectory to run on the global sliding mode surface at the start point more quickly and eliminates the reaching phase of the conventional sliding mode control, but also restrains the steady-state error and reduces the chattering via a dynamic PID sliding surface. A RBF neural network (NN) system is employed to estimate the lumped uncertainty and eliminate the chattering phenomenon at the same time. Additionally, adaptive laws and dynamic global PID sliding control gains that ensure the asymptotic stability of the close-loop system are proposed, together with the techniques for deciding which kind of basis function should be selected. Finally, simulation results demonstrate the effectiveness of RBFNN dynamic global PID sliding mode control method, meanwhile some comparisons are made to verify the good properties of the suggested control approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.