BACKGROUND: Photopharmacology is a fast-growing photonics-based technology, which realizes the high-resolution regulation of drugs in time and space through light. The purpose of this research was to introduce photochromic groups into the isoxazoline structure to realize the regulation of γ-Aminobutyric acid receptors (GABARs) targeting insect behavior.RESULTS: Azobenzene-Fluralaner analogs ABF02, ABF03 and ABF04 have been proven to have larvicidal activity against mosquito larvae. Cis-ABF03 had excellent larvicidal activity against mosquito larvae with a median lethal concentration (LC 50 ) value of 1.63, which was better than that of trans-ABF03 (LC 50 = 3.90). In particular, ABF03 also showed insecticidal activity against Mythimna separata. Further experiments showed that ABF03 (1 ∼M) induced depolarization of dorsal unpaired median neurons after ultraviolet light irradiation, enhanced affinity to the receptor, and blocked ligand-gated chloride channels of GABARs. ABF03 (1 ∼M) realized the real-time photoregulation of the behavior of mosquito larvae, which indicated that the synthesized ligand can complete the binding and off-target action of drugs and targets in vivo under the regulation of light.CONCLUSION: Azobenzene-Isoxazoline as photopharmacological ligand was synthesized and evaluated for optical control of insect GABARs and behavior for the first time. ABF03 completed the differential regulation of cockroach neurons and the real-time reversible regulation of insect behavior. The establishment of photochromic ligands provides a new strategy for basic and convenience-oriented research on GABARs in invertebrates.
In order to achieve light regulation of biological functions, a series of photoswitchable azobenzene-based meta-diamide analogues were synthesized. One of the ABMDAs can lead to activity changes towards Aedes albopictus larvae upon photoisomerization and enables optical modulation of membrane potential of DUM neurons.
BACKGROUND: Ionotropic γ-aminobutyric acid (GABA) receptor (GABAR) in an insect is the major inhibitory receptor and is one of the most important targets for insecticides. Due to the high spatiotemporal resolution of GABAR, the photopharmacological ligands acting on it in vertebrates but not insect have been developed. RESULTS: In this study, two types of photochromic ligands (PCLs) including DTFIPs (DTFIP1 and DTFIP2) and ABFIPs (p-, m-, and o-ABFIP) were synthesized by incorporating photoswitch azobenzene or dithienylethene into fipronil (FIP), which is the antagonist of insect GABAR. Their photomodulation was measured by mosquito larval behavior, and their potential action mechanism was explored by the two-electrode voltage clamp (TEVC) technique in vitro. DTFIP1 and m-ABFIP exhibited the most significant difference of insecticidal activity by about 90-and 5-fold to mosquito larvae between non-irradiated and irradiated formation, respectively, and allowed for optical control of mosquito swimming activity. TEVC assay results indicated that m-ABFIP and DTFIP1 enable optical control over the homomeric LsRDL-type GABAR, which is achieved by regulating the chloride channel of resistance to dieldrin (RDL)-type GABAR by photoisomerization. CONCLUSION: Our results suggested that PCLs synthesized from fipronil provide an alternative and precise tool for studying insect ionotropic GABARs and GABA-dependent behavior.
Oxoisoaporphine (OA) is a plant phototoxin isolated from Menispermaceae, however, its weak fluorescence and low water solubility impede it for theranostics. We developed here 4-hydroxyl-oxoisoaporphine (OHOA), which has good singlet oxygen-generating ability (0.06), strong fluorescence (0.72) and improved water solubility. OHOA displays excellent fluorescence for cell imaging and exhibits light-induced cytotoxicity against cancer cell. In vitro model of human cervical carcinoma (HeLa) cell proved that singlet oxygen generated by OHOA triggered photosensitized oxidation reactions and exert toxic effect on tumor cells. The MTT assay using HeLa cells verified the low cytotoxicity of OHOA in the dark and high phototoxicity. Confocal experiment indicates that OHOA mainly distributes in mitochondria and western blotting demonstrated that OHOA induces cell apoptosis via the mitochondrial pathway in the presence of light. Our molecule provides an alternative choice as a theranostic agent against cancer cells which usually are in conflict with each other for most traditional theranostic agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.