Biogenic compounds are important materials for drug discovery and chemical biology. In this work, we report a quasi-biogenic molecule generator (QBMG) to compose virtual quasi-biogenic compound libraries by means of gated recurrent unit recurrent neural networks. The library includes stereo-chemical properties, which are crucial features of natural products. QMBG can reproduce the property distribution of the underlying training set, while being able to generate realistic, novel molecules outside of the training set. Furthermore, these compounds are associated with known bioactivities. A focused compound library based on a given chemotype/scaffold can also be generated by this approach combining transfer learning technology. This approach can be used to generate virtual compound libraries for pharmaceutical lead identification and optimization.
Electronic supplementary material
The online version of this article (10.1186/s13321-019-0328-9) contains supplementary material, which is available to authorized users.
Performance of structure-based molecular docking largely depends on the accuracy of scoring functions. One important type of scoring functions are knowledge-based potentials derived from known three-dimensional structures of proteins and/or protein–ligand complex structures. This study seeks to improve a knowledge-based protein–ligand potential based on a distance-scale finite ideal-gas reference (DFIRE) state (DLIGAND) by expanding the representation of protein atoms from 13 mol2 atom types to 167 residue-specific atom types, and employing a recently updated dataset containing 12,450 monomer protein chains for training. We found that the updated version DLIGAND2 has a consistent improvement over DLIGAND in predicting binding affinities for either native complex structures or docking-generated poses. More importantly, DLIGAND2 has a 52% increase over DLIGAND in enrichment factors in top 1% predictions based on the DUD-E decoy set, and consistently improves over Autodock Vina and other statistical energy functions in all three benchmark tests. We further found that DLIGAND2 outperforms empirical and machine-learning methods compared for virtual screening on new targets that are not homologous to the DUD-E training set. Given the best performance as a parameter-free statistical potential and among the best in all performance measures, DLIGAND2 should be useful for re-assessing the poses generated by docking software, or acting as one term in other scoring functions. The program is available at
https://github.com/sysu-yanglab/DLIGAND2
.
Electronic supplementary material
The online version of this article (10.1186/s13321-019-0373-4) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.