Coherent diffraction imaging (CDI) is high-resolution lensless microscopy that has been applied to image a wide range of specimens using synchrotron radiation, X-ray free-electron lasers, high harmonic generation, soft X-ray lasers and electrons. Despite recent rapid advances, it remains a challenge to reconstruct fine features in weakly scattering objects such as biological specimens from noisy data. Here an effective iterative algorithm, termed oversampling smoothness (OSS), for phase retrieval of noisy diffraction intensities is presented. OSS exploits the correlation information among the pixels or voxels in the region outside of a support in real space. By properly applying spatial frequency filters to the pixels or voxels outside the support at different stages of the iterative process ( a smoothness constraint), OSS finds a balance between the hybrid input-output (HIO) and error reduction (ER) algorithms to search for a global minimum in solution space, while reducing the oscillations in the reconstruction. Both numerical simulations with Poisson noise and experimental data from a biological cell indicate that OSS consistently outperforms the HIO, ER-HIO and noise robust (NR)-HIO algorithms at all noise levels in terms of accuracy and consistency of the reconstructions. It is expected that OSS will find application in the rapidly growing CDI field, as well as other disciplines where phase retrieval from noisy Fourier magnitudes is needed. The (The MathWorks Inc., Natick, MA, USA) source code of the OSS algorithm is freely available from http://www.physics.ucla.edu/research/imaging.
We theoretically investigate the strong coupling phenomenon between a quasi-single molecule and a plasmonic cavity based on the blue-detuned trapping system. The trapping system is made up of a metallic nanohole array. A finite-difference time-domain method is employed to simulate the system, and the molecule is treated as a dipole in simulations. By calculating the electromagnetic field distributions, we obtain the best position for trapping a molecule, and we get the strong coupling phenomenon that there are two splitting peaks in the transmission spectrum when the molecule is trapped in the structure, while only one peak is observed in the one without the molecule. We also find that only when the molecule polarization parallels to the incident light wave vector can we observe a strong coupling phenomenon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.