These authors contributed equally to this work.Keywords: autophagy, BECN1, ovarian cancer, paclitaxel resistance, TXNDC17Abbreviations: 95% CI, 95% confidence interval; ALDOC, aldolase C, fructose-bisphosphate; ATG5, autophagy-related 5; BafA1, bafilomycin A 1 ; BECN1, Beclin 1, autophagy-related; CNN3, calponin 3, acidic; DAPI, 4', 6-diamidino-2-phenylindole; FLNA, filamin A, a; GenMAPP, gene microarray pathway profiler; GO, gene ontology; HBSS, Hank's balanced salt solution; HR, hazard ratio; KEGG, Kyoto encyclopedia of genes and genome; LC-MS/MS, liquid chromatography-mass spectrometry/ mass spectrometry; MAP1LC3B/LC3B, microtubule-associated protein 1 light chain 3 b; OS, overall survival; PFS, progression-free survival; PGAM1, phosphoglycerate mutase 1 (brain); siRNA, short interfering RNA; SQSTM1, sequestosome 1; TNF, tumor necrosis factor; TXN, thioredoxin; TXNDC17, thioredoxin domain containing 17; UTP23, small subunit (SSU) processome component, homolog (yeast).Paclitaxel is recommended as a first-line chemotherapeutic agent against ovarian cancer, but drug resistance becomes a major limitation of its success clinically. The key molecule or mechanism associated with paclitaxel resistance in ovarian cancer still remains unclear. Here, we showed that TXNDC17 screened from 356 differentially expressed proteins by LC-MS/MS label-free quantitative proteomics was more highly expressed in paclitaxel-resistant ovarian cancer cells and tissues, and the high expression of TXNDC17 was associated with poorer prognostic factors and exhibited shortened survival in 157 ovarian cancer patients. Moreover, paclitaxel exposure induced upregulation of TXNDC17 and BECN1 expression, increase of autophagosome formation, and autophagic flux that conferred cytoprotection for ovarian cancer cells from paclitaxel. TXNDC17 inhibition by siRNA or enforced overexpression by a pcDNA3.1(C)-TXNDC17 plasmid correspondingly decreased or increased the autophagy response and paclitaxel resistance. Additionally, the downregulation of BECN1 by siRNA attenuated the activation of autophagy and cytoprotection from paclitaxel induced by TXNDC17 overexpression in ovarian cancer cells. Thus, our findings suggest that TXNDC17, through participation of BECN1, induces autophagy and consequently results in paclitaxel resistance in ovarian cancer. TXNDC17 may be a potential predictor or target in ovarian cancer therapeutics.
Aim: The aim of the present study was to investigate the correlation between fibrinogen level, platelet count and prognosis in patients with epithelial ovarian cancer (EOC). Material and Methods: Preoperative fibrinogen level and platelet count in 136 EOC patients and 146 patients with benign ovarian tumor, and their associations with clinicopathologic parameters and survival in EOC patients, were retrospectively analyzed. Results: The fibrinogen level in EOC was higher than that in benign patients (3.95 ± 1.37 g/L versus 2.88 ± 0.6 g/L, P < 0.001), and 36.0% (49/136) of EOC patients had hyperfibrinogenemia (fibrinogen >4.0 g/L). The platelet count in EOC was higher than that in benign patients (251.5 ± 89.4 × 109/L versus 206.7 ± 49.0 × 109/L P < 0.001), and 7.4% (10/136) of EOC patients had thrombocytosis (platelet count >400 × 109/L). Hyperfibrinogenemia was associated with International Federation of Gynecologists and Obstetricians (FIGO) stage, non‐optimal cytoreduction and poor chemo‐response, but not with histologic type and grade, CA‐125 level, chemotherapy method, and age. EOC patients with advanced disease showed higher rate of elevated thrombocyte count than patients with early disease (30.7% versus 8.3%, P = 0.002). The rate of thrombocytosis was higher in patients with hyperfibrinogenemia than in those with normal fibrinogen (9/10 versus 1/10, P < 0.001). A significant correlation between platelet count and fibrinogen level was observed in EOC patients (P < 0.001). In multivariate analysis, overall survival was influenced by tumor stage (P < 0.001), chemotherapy with taxane (P < 0.001) and fibrinogen level (P = 0.004), and disease‐free survival was only influenced by tumor stage (P < 0.001). Conclusion: Our findings suggest that hyperfibrinogenemia may be a predictor for poor chemo‐response and have a potential role as independent prognostic factors in EOC patients.
Background Hypoxia is a major cause of beta cell death and dysfunction after transplantation. The aim of this study was to investigate the effect of exosomes derived from mesenchymal stem cells (MSCs) on beta cells under hypoxic conditions and the potential underlying mechanisms. Methods Exosomes were isolated from the conditioned medium of human umbilical cord MSCs and identified by WB, NTA, and transmission electron microscopy. Beta cells (βTC-6) were cultured in serum-free medium in the presence or absence of exosomes under 2% oxygen conditions. Cell viability and apoptosis were analysed with a CCK-8 assay and a flow cytometry-based annexin V-FITC/PI apoptosis detection kit, respectively. Endoplasmic reticulum stress (ER stress) proteins and apoptosis-related proteins were detected by the WB method. MiRNAs contained in MSC exosomes were determined by Illumina HiSeq, and treatment with specific miRNA mimics or inhibitors of the most abundant miRNAs was used to reveal the underlying mechanism of exosomes. Results Exosomes derived from MSC-conditioned culture medium were 40–100 nm in diameter and expressed the exosome markers CD9, CD63, CD81, HSP70, and Flotillin 1, as well as the MSC markers CD73, CD90, and CD105. Hypoxia significantly induced beta cell apoptosis, while MSC exosomes remarkably improved beta cell survival. The WB results showed that ER stress-related proteins, including GRP78, GRP94, p-eIF2α and CHOP, and the apoptosis-related proteins cleaved caspase 3 and PARP, were upregulated under hypoxic conditions but were inhibited by MSC exosomes. Moreover, the p38 MAPK signalling pathway was activated by hypoxia and was inhibited by MSC exosomes. The Illumina HiSeq results show that MSC exosomes were rich in miR-21, let-7 g, miR-1246, miR-381, and miR-100. After transfection with miRNA mimics, the viability of beta cells under hypoxia was increased significantly by miR-21 mimic, and the p38 MAPK and ER stress-related proteins in beta cells were downregulated. These changes were reversed after exosomes were pretreated with miR-21 inhibitor. Conclusions Exosomes derived from MSCs could protect beta cells against apoptosis induced by hypoxia, largely by carrying miR-21, alleviating ER stress and inhibiting p38 MAPK signalling. This result indicated that MSC exosomes might improve encapsulated islet survival and benefit diabetes patients.
Long noncoding RNAs (lncRNAs) are emerging as important regulators during tumorigenesis by serving as competing endogenous RNAs (ceRNAs). In this study, the qRT-PCR results indicated that the lncRNA protein disulfide isomerase family A member 3 pseudogene 1 (PDIA3P) was overexpressed in oral squamous cell carcinoma (OSCC) and decreased the survival rate of OSCC patients. CCK-8 and clonal colony formation assays were used to detect the effects of PDIA3P on proliferation. Results revealed that silencing PDIA3P by small interfering RNA (siRNA) inhibited OSCC cell proliferation and repressed tumor growth and reduced the expression of proliferation antigen Ki-67 in vivo. Furthermore, the interaction between PDIA3P and miRNAs was then analyzed by qRT-PCR and luciferase reporter gene assay. We found that PDIA3P negatively regulated miR-185-5p in OSCC cells. Simultaneously, we found that silencing PDIA3P by siRNA suppressed proliferation via miR-185-5p in OSCC cells. Moreover, silencing PDIA3P by siRNA inhibited CCND2 protein (no influence on mRNA levels) expression via miR-185-5p in OSCC cells, and CCND2 facilitated cell proliferation of SCC4 and SCC15 cells induced by sh-PDIA3P#1. Therefore, our study demonstrated that PDIA3P may be a therapeutic target for the treatment of OSCC.
Lymphocytes depend on transmethylation reactions for efficient activation and function. These reactions are primarily catalyzed by S-adenosylmethionine-dependent methyltransferases, which convert S-adenosylmethionine to S-adenosyl-Lhomocysteine. S-adenosyl-L-homocysteine is then hydrolyzed by S-adenosyl-L-homocysteine hydrolase to prevent feedback inhibition of transmethylation reactions. By impeding S-adenosyl-L-homocysteine hydrolase, a build-up of S-adenosyl-L-homocysteine occurs, and most intracellular transmethylation reactions cease. Thus, a nontoxic inhibitor of this enzyme might be a useful immunosuppressive therapeutic agent. We identified a potent reversible type III inhibitor of S-adenosyl-L-homocysteine hydrolase, DZ2002 [methyl 4-(adenin-9-yl)-2-hydroxybutanoate], and determined its cytotoxic and immunologic effects. We demonstrated that DZ2002 blocked S-adenosyl-Lhomocysteine hydrolase more effectively than a type I inhibitor, but cytotoxicity from DZ2002 was greatly reduced. Although DZ2002 did not prevent concanavalin A-induced T cell proliferation or interleukin (IL)-2 production, it significantly reduced both a mixed lymphocyte reaction and IL-12 production from in vitro-stimulated splenocytes. In addition, levels of CD80 and CD86 on human monocytic THP-1 cells were decreased in a dose-dependent manner in the presence of 0.1 to 10 M DZ2002, and decreases were also seen in IL-12 and tumor necrosis factor-␣ production from both mouse thioglycollatestimulated peritoneal macrophages and THP-1 cells. In vivo, DZ2002 significantly suppressed a delayed-type hypersensitivity reaction as well as antibody secretion. We conclude that DZ2002's immunosuppressive effects are likely not solely attributed to T cell inhibition but also to the obstruction of macrophage activation and function through reductions in cytokine output and/or T cell costimulation. These data suggest an important dual role for the S-adenosyl-L-homocysteine hydrolase in both macrophage and T cell function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.