BackgroundPancreatic cancer is a highly lethal disease and has the worst prognosis of any major malignancy. G protein-coupled receptor GPR87 is reported to be overexpressed in multiple cancers. The clinical significance and biological role of GPR87 in pancreatic cancer, however, remain to be established.MethodsGPR87 expression in pancreatic cancer cell lines, paired patient tissues were determined using western blotting and Real-time PCR. Ninety-six human pancreatic cancer tissue samples were analyzed by immunochemistry (IHC) to investigate the association between GPR87 expression and the clinicopathological characteristics of pancreatic cancer. Functional assays, such as anchorage-independent growth, chicken chorioallantoic membrane (CAM) assay, transwell matrix penetration assay, and Annexin V-FITC and PI staining and a xenograft tumor model were used to determine the oncogenic role of GPR87 in human pancreatic cancer progression. The effect of GPR87 on NF-κB signaling pathway was further investigated using the luciferase reporter assays, and by detection of the NF-κB signaling downstream genes.ResultsHerein, we reported that GPR87 was markedly overexpressed in pancreatic cancer cells and clinical tissues. Immunohistochemical analysis showed that the expression of GPR87 significantly correlated with patients’ clinicopathologic features, including clinical stage and tumor-nodule-metastasis (TNM) classification. Pancreatic cancer patients with higher levels of GPR87 expression had shorter overall survival compared to patients with lower GPR87 levels. We gained valuable insights into the mechanism of GPR87 expression in pancreatic cancer cells by demonstrating that overexpressing GPR87 significantly enhanced, whereas silencing endogenous GPR87 inhibited, the proliferation, angiogenesis and increased resistance to gemcitabine-induced apoptosis of pancreatic cancer in vitro and tumorigenicity of pancreatic cancer cells in vivo. Finally, we demonstrated that GPR87 enhanced pancreatic cancer aggressiveness by activating NF-κB signaling pathway. Conclusions: Taken together, these findings suggest that GPR87 plays a critical oncogenic role in pancreatic cancer progression and highlight its potential as a target for pancreatic cancer therapy.ConclusionsOur findings suggest that GPR87 plays a critical oncogenic role in pancreatic cancer progression and highlight its potential as a target for pancreatic cancer therapy.Electronic supplementary materialThe online version of this article (doi:10.1186/s12943-017-0627-6) contains supplementary material, which is available to authorized users.
Background Tripsacum dactyloides (2n = 4x = 72) and Zea perennis (2n = 4x = 40) are tertiary gene pools of Zea mays L. and exhibit many abiotic adaptations absent in modern maize, especially salt tolerance. A previously reported allopolyploid (hereafter referred to as MTP, 2n = 74) synthesized using Zea mays, Tripsacum dactyloides, and Zea perennis has even stronger salt tolerance than Z. perennis and T. dactyloides. This allopolyploid will be a powerful genetic bridge for the genetic improvement of maize. However, the molecular mechanisms underlying its salt tolerance, as well as the key genes involved in regulating its salt tolerance, remain unclear. Results Single-molecule real-time sequencing and RNA sequencing were used to identify the genes involved in salt tolerance and reveal the underlying molecular mechanisms. Based on the SMRT-seq results, we obtained 227,375 reference unigenes with an average length of 2300 bp; most of the unigenes were annotated to Z. mays sequences (76.5%) in the NR database. Moreover, a total of 484 and 1053 differentially expressed genes (DEGs) were identified in the leaves and roots, respectively. Functional enrichment analysis of DEGs revealed that multiple pathways responded to salt stress, including “Flavonoid biosynthesis,” “Oxidoreductase activity,” and “Plant hormone signal transduction” in the leaves and roots, and “Iron ion binding,” “Acetyl-CoA carboxylase activity,” and “Serine-type carboxypeptidase activity” in the roots. Transcription factors, such as those in the WRKY, B3-ARF, and bHLH families, and cytokinin negatively regulators negatively regulated the salt stress response. According to the results of the short time series-expression miner analysis, proteins involved in “Spliceosome” and “MAPK signal pathway” dynamically responded to salt stress as salinity changed. Protein–protein interaction analysis revealed that heat shock proteins play a role in the large interaction network regulating salt tolerance. Conclusions Our results reveal the molecular mechanism underlying the regulation of MTP in the response to salt stress and abundant salt-tolerance-related unigenes. These findings will aid the retrieval of lost alleles in modern maize and provide a new approach for using T. dactyloides and Z. perennis to improve maize.
Abstract-The architectural programming has developed quite mature in the US, Europe and Japan, while in our country it has just started. Firstly, this paper corrects the misunderstanding of architectural programming from the understanding, further points out the relationship between programming and architectural design, and the importance of programming, finally puts forward the measures that shall be taken currently in the face of the architectural programming, so as to guide the construction and architectural design of our country to develop in a more healthy and mature direction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.