To optimize biodiesel manufacturing, many reported studies have built simulation models to quantify the relationship between operating conditions and process performance. For mass and energy balance simulations, it is essential to know the four fundamental thermophysical properties of the feed oil: liquid density (ρ L ), vapor pressure (P vap ), liquid heat capacity (C p L ), and heat of vaporization (ΔH vap ). Additionally, to characterize the fuel qualities, it is critical to develop quantitative correlations to predict three biodiesel properties, namely, viscosity, cetane number, and flash point. Also, to ensure the operability of biodiesel in cold weather, one needs to quantitatively predict three low-temperature flow properties: cloud point (CP), pour point (PP), and cold filter plugging point (CFPP). This article presents the results from a comprehensive evaluation of the methods for predicting these four essential feed oil properties and six key biodiesel fuel properties. We compare the predictions to reported experimental data and recommend the appropriate prediction methods for each property based on accuracy, consistency, and generality. Of particular significance are (1) our presentation of simple and accurate methods for predicting the six key fuel properties based on the number of carbon atoms and the number of double bonds or the composition of total unsaturated fatty acid methyl esters (FAMEs) and (2) our posting of the Excel spreadsheets for implementing all of the evaluated accurate prediction methods on our group website (www.design.che.vt.edu) for the reader to download without charge.ii Acknowledgement
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.