Two-dimensional materials are promising for a range of applications, as well as testbeds for probing the physics of low-dimensional systems. Tungsten disulfide (WS2) monolayers exhibit a direct band gap and strong photoluminescence (PL) in the visible range, opening possibilities for advanced optoelectronic applications. Here, we report the realization of two-dimensional nanometersize pores in suspended monolayer WS2 membranes, allowing for electrical and optical response in ionic current measurements. A focused electron beam was used to fabricate nanopores in WS2 membranes suspended on silicon-based chips and characterized using PL spectroscopy and aberration-corrected high-resolution scanning transmission electron microscopy. It was observed that the PL intensity of suspended WS2 monolayers is ~10–15 times stronger when compared to that of substrate-supported monolayers, and low-dose scanning transmission electron microscope viewing and drilling preserves the PL signal of WS2 around the pore. We establish that such nanopores allow ionic conductance and DNA translocations. We also demonstrate that under low-power laser illumination in solution, WS2 nanopores grow slowly in size at an effective rate of ~0.2–0.4 nm/s, thus allowing for atomically controlled nanopore size using short light pulses.
Nanopores are promising for many applications including DNA sequencing and molecular filtration. Solid-state nanopores are preferable over their biological counterparts for applications requiring durability and operation under a wider range of external parameters, yet few studies have focused on optimizing their robustness. We report the lifetime and durability of pores and porous arrays in 10 to 100 nm-thick, low-stress silicon nitride (SiN x ) membranes. Pores are fabricated using a transmission electron microscope (TEM) and/or electron beam lithography (EBL) and reactive ion etching (RIE), with diameters from 2 to 80 nm. We store them in various electrolyte solutions (KCl, LiCl, MgCl2) and record open pore conductance over months to quantify pore stability. Pore diameters increase with time, and diameter etch rate increases with electrolyte concentration from Δd/Δt ∼ 0.2 to ∼ 3 nm/day for 0.01 to 3 M KCl, respectively. TEM confirms the range of diameter etch rates from ionic measurements. Using electron energy loss spectroscopy (EELS), we observe a N-deficient region around the edges of TEM-drilled pores. Pore expansion is caused by etching of the Si/SiO2 pore walls, which resembles the dissolution of silicon found in minerals such as silica (SiO2) in salty ocean water. The etching process occurs where the membrane was exposed to the electron beam and can result in pore formation. However, coating pores with a conformal 1 nm-thick hafnium oxide layer prevents expansion in 1 M KCl, in stark contrast to bare SiN x pores (∼ 1.7 nm/day). EELS data reveal the atomic composition of bare and HfO2-coated pores.
A facile transfer process for transition metal dichalcogenide WS2 flakes is reported and the effect of the underlying substrate on the flake properties is investigated using Raman spectroscopy. The flakes are transferred from their growth substrate using polymethyl methacrylate (PMMA) and a wet etch to allow the user to transfer the flakes to a final substrate using a microscope and micromanipulator combined with semi-transparent Kapton tape. The substrates used range from insulators such as industry standard high-k dielectric HfO2 and “green polymer” parylene-C, to conducting chemical vapor deposition (CVD) grown graphene. Raman spectroscopy is used first to confirm the material quality of the transferred flakes to the substrates and subsequently to analyze and separate the effects arising from material transfer from those arising from interactions with the substrate. We observe changes in the Raman spectra associated with the interactions between the substrates in the flakes. These interactions affect both in-plane and out-of-plane modes in different ways depending on their sources, for example strain or surface charge. These changes vary with final substrate, with the strongest effects being observed for WS2 transferred onto graphene and HfO2, demonstrating the importance of understanding substrate interaction for fabrication of future devices.
Nanopore sensing is a powerful tool for the detection of biomolecules. Solid-state nanopores act as single-molecule sensors that can function in harsh conditions. Their resilient nature makes them attractive candidates for taking this technology into the field to measure environmental samples for life detection in space and water quality monitoring. Here, we discuss the fabrication of silicon nitride pores from ∼1.6 to 20 nm in diameter in 20-nm-thick silicon nitride membranes suspended on glass chips and their performance. We detect pure laboratory samples containing a single analyte including DNA, BSA, microRNA, TAT, and poly-D-lys-hydrobromide. We also measured an environmental (mixed-analyte) sample, containing Antarctic dirt provided by NASA Ames. For DNA measurements, in addition to using KCl and NaCl solutions, we used the artificial (synthetic) seawater, which is a mixture of different salts mimicking the composition of natural seawater. These samples were spiked with double-stranded DNA (dsDNA) fragments at different concentrations to establish the limits of nanopore sensitivity in candidate environment conditions. Nanopore chips were cleaned and reused for successive measurements. A stand-alone, 1-MHz-bandwidth Chimera amplifier was used to determine the DNA concentration in artificial seawater that we can detect in a practical time scale of a few minutes. We also designed and developed a new compact nanopore reader, a portable read-out device with miniaturized fluidic cells, which can obtain translocation data at bandwidths up to 100 kHz. Using this new instrument, we record translocations of 400 bp, 1000 bp, and 15000 bp dsDNA fragments and show discrimination by analysis of current amplitude and event duration histograms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.