SUMMARY The regenerative capacity of the peripheral nervous system declines with age. Why this occurs, however, is unknown. We demonstrate that 24-month old mice exhibit an impairment of functional recovery after nerve injury compared to 2-month old animals. We find no difference in the intrinsic growth capacity between aged and young sensory neurons in vitro nor in their ability to activate growth-associated transcriptional programs after injury. Instead, using age-mismatched nerve transplants in vivo, we show that the extent of functional recovery depends on the age of the nerve graft, and not the age of the host. Molecular interrogation of the sciatic nerve reveals that aged Schwann cells (SCs) fail to rapidly activate a transcriptional repair program after injury. Functionally, aged SCs exhibit impaired de-differentiation, myelin clearance and macrophage recruitment. These results suggest that the age-associated decline in axonal regeneration results from diminished Schwann cell plasticity, leading to slower myelin clearance.
IL-19 belongs to the IL-10 family, which includes IL-10, IL-19, IL-20, IL-22, melanoma differentiation-associated gene-7 (IL-24), and AK155 (IL-26). IL-10 has been shown to inhibit allergen-induced airway hyperreactivity and inflammation. To determine whether IL-19 was also associated with asthma, we used ELISA to analyze the serum level of IL-19 in patients with asthma and found that their serum IL-19 levels were twice those of healthy controls. Patients with a high level of IL-19 also had high levels of IL-4 and IL-13. In a dust mite-induced murine model of asthma, we found that IL-19 level in asthmatic BALB/cJ mice was also twice that of healthy control mice. IL-19 transcript was also induced in the lungs of asthmatic mice. Electroporation i.m. of the IL-19 gene into healthy mice up-regulated IL-4 and IL-5, but not IL-13. However, IL-19 up-regulated IL-13 in asthmatic mice. In vitro, IL-19 induced IL-4, IL-5, IL-10, and IL-13 production by activated T cells. Activation of T cells was required for induction of IL-13 because IL-19 did not induce IL-13 production on nonstimulated T cells. Taken together, these results demonstrated that IL-19 up-regulates Th2 cytokines on activated T cells and might play an important role in the pathogenesis of asthma.
Hyperactivation of the mechanistic target of rapamycin (mTOR) kinase, as a result of loss-of-function mutations in tuberous sclerosis complex 1 (TSC1) or TSC2 genes, causes protein synthesis dysregulation, increased cell size, and aberrant neuronal connectivity. Dysregulated synthesis of synaptic proteins has been implicated in the pathophysiology of autism spectrum disorder (ASD) associated with TSC and fragile X syndrome. However, cell type-specific translational profiles in these disease models remain to be investigated. Here, we used high-fidelity and unbiased Translating Ribosome Affinity Purification (TRAP) methodology to purify ribosome-associated mRNAs and identified translational alterations in a rat neuronal culture model of TSC. We find that expression of many stress and/or activity-dependent proteins is highly induced while some synaptic proteins are repressed. Importantly, transcripts for the activating transcription factor-3 (Atf3) and mitochondrial uncoupling protein-2 (Ucp2) are highly induced in Tsc2-deficient neurons, as well as in a neuron-specific Tsc1 conditional knock-out mouse model, and show differential responses to the mTOR inhibitor rapamycin. Gelsolin, a known target of Atf3 transcriptional activity, is also upregulated. shRNA-mediated block of Atf3 induction suppresses expression of gelsolin, an actin-severing protein, and rescues spine deficits found in Tsc2-deficient neurons. Together, our data demonstrate that a cell-autonomous program consisting of a stress-induced Atf3-gelsolin cascade affects the change in dendritic spine morphology following mTOR hyperactivation. This previously unidentified molecular cascade could be a therapeutic target for treating mTORopathies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.