The study was devoted to the observation and modeling the mechanical behaviors of a hybrid SBR/NR (Styrene-Butadiene/Natural Rubber) hybrid vulcanized rubber fender under monotonic/cyclic compression. In experimental observations of the monotonic compression tests, it was found that lateral deformation occurred on the tested fender and was more significant with increasing the extent of the compressive strain. The relationship between the transmission stress Sc and the compressive strain ec was nonlinear and the absorbed strain-energy-density was increased monotonically with the increment of the compressive strain. Among all cyclic compression tests with strain controlled, the reductions in both the stress range and the absorbed strain-energy-density up to the ten-thousandth cycle were found and then both of the cyclic properties remain approximately constant in the following compression cycles. Two new properties, the softening factor and the energy reduction factor, were introduced to quantify the effect of the strain range on the extent of the reduction in stress range and that on the absorbed strain-energy-density, respectively. It was found that both of the calculated values of the new properties increase with the increment of strain range. In mathematical modeling of the relationship between the transmission stress and the compressive strain, a new approach based on energy-polynomial-function Es(ec) was presented and was successfully used to simulate the monotonic curve and the stable hysteresis loop curves of the tested rubber fender in compression. Essentially, the energy-polynomial-function Es(ec) was obtained by performing a polynomial regression on a large amount of (ec,Esfalse) data. Moreover, the least-square approach was applied to determine the corresponding regression coefficients in Es(ec). Clearly, the stress-polynomial-function in modeling the Sc−ec curve could be obtained from the differentiation of the energy-polynomial-function with respect to the compressive strain. In addition, to provide an adequate estimation of the mechanical properties of the cylindrical rubber fender under compression, the named cyclic stress-strain curve and cyclic energy-strain curve were developed and also modeled in this study.
In this study, the effect of wall thickness (15–25 mm) on the stress–strain response of hollow-cylinder rubber fenders were investigated by conducting monotonic compression tests. It was found that a progressive increase in lateral bending deformation was observed during monotonic compression. Simultaneously, the extent of the lateral deflection decreased notably with an increasing wall thickness. From the experimental results, the fact is accepted that buckling occurred in the tested fender due to the fact that the ratio of the height to the wall thickness was higher than four in all of the considered cases. Moreover, an s-shape profile appeared in the stress–strain curves, which became clearer as the wall thickness was reduced from 25 to 15 mm. To assess the performance of fenders objectively, an energy-effectiveness index, C E R , was introduced to quantify the energy absorption capacity of the fender. From the experimental observations, it was inferred that the contact area of the folded inner surface of the fender produced under compression generated an additional reaction force and affected the shape of the stress–strain curve since the measured load consisted of two reaction forces: one caused by the self-contact area, and the other resulted from the compression-bending deformation that occurred in the side wall of the fender. To examine this assertion, a finite element analysis (FEA) was conducted and confirmed the effect of the reaction force on the sensitivity of the s-shape characteristic of the stress–strain curve. Finally, a polynomial regression was conducted and the calculated results based on the fourth-degree stress polynomial function correlated very well with the measured stress–strain curves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.