Si composite negative electrodes for lithium secondary batteries degrade in the dealloying period with an abrupt increase in internal resistance that is caused by a breakdown of conductive network made between Si and carbon particles. This results from a volume contraction of Si particles after expansion in the previous alloying process. Due to the large internal resistance, the dealloying reaction is not completed while Si remains as a lithiated state. The anodic performance is greatly improved either by applying a pressure on the cells or loading a larger amount of conductive carbon in the composite electrodes.
Electrooxidation of methanol in sulfuric acid solution was studied using Pt, Pt/Ni(1:1 and 3:1), Pt/Ru/Ni(5: 4:1 and 6:3.5:0.5), and Pt/Ru(1:1) alloy nanoparticle catalysts, in relation to methanol oxidation processes in the direct oxidation methanol fuel cell. The Pt/Ni and Pt/Ru/Ni alloys showed excellent catalytic activities compared to those of pure Pt and Pt/Ru. The role of Ni as a catalytically enhancing agent in the oxidation process was interrogated using cyclic voltammetry, chronoamperometry, X-ray photoelectron spectroscopy, transmission electron microscopy, and X-ray diffraction. X-ray diffraction data showed alloy formation for all Pt/Ni, Pt/Ru/Ni, and Pt/Ru nanoparticles, whereas X-ray photoelectron spectroscopy confirmed that chemical states of Pt were exclusively metallic. The presence of metallic Ni, NiO, Ni(OH) 2 , NiOOH, metallic Ru, RuO 2 , and RuO 3 was also confirmed. We found that the Pt4f binding energies for the Pt/Ni and Pt/Ru/Ni alloy nanoparticles were lower than those for clean Pt nanoparticles. The oxides that serve as the oxygen donors for the oxidation process, and the change in the electronic structure of the Pt component in the alloys versus those in Pt and Pt/Ru collectively account, we believe, for enhancement in rates of methanol oxidation. The difference in the peak shift in Pt4f between Pt/Ni and Pt/Ru alloy nanoparticles is discussed by using electronegativities of the three components: Pt, Ru, and Ni. A comparison between the alloy nanoparticle composition and that of disk alloy electrodes under similar conditions was made in terms of the surface-tovolume ratio and surface segregation of the alloying components.
Demand on the practical synthetic approach to the high performance electrocatalyst is rapidly increasing for fuel cell commercialization. Here we present a synthesis of highly durable and active intermetallic ordered face-centered tetragonal (fct)-PtFe nanoparticles (NPs) coated with a "dual purpose" N-doped carbon shell. Ordered fct-PtFe NPs with the size of only a few nanometers are obtained by thermal annealing of polydopamine-coated PtFe NPs, and the N-doped carbon shell that is in situ formed from dopamine coating could effectively prevent the coalescence of NPs. This carbon shell also protects the NPs from detachment and agglomeration as well as dissolution throughout the harsh fuel cell operating conditions. By controlling the thickness of the shell below 1 nm, we achieved excellent protection of the NPs as well as high catalytic activity, as the thin carbon shell is highly permeable for the reactant molecules. Our ordered fct-PtFe/C nanocatalyst coated with an N-doped carbon shell shows 11.4 times-higher mass activity and 10.5 times-higher specific activity than commercial Pt/C catalyst. Moreover, we accomplished the long-term stability in membrane electrode assembly (MEA) for 100 h without significant activity loss. From in situ XANES, EDS, and first-principles calculations, we confirmed that an ordered fct-PtFe structure is critical for the long-term stability of our nanocatalyst. This strategy utilizing an N-doped carbon shell for obtaining a small ordered-fct PtFe nanocatalyst as well as protecting the catalyst during fuel cell cycling is expected to open a new simple and effective route for the commercialization of fuel cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.