A combination of the venturi module and the vortex cup was proposed to solve vortex instability and to enhance grip capacity. Mounting a venturi suction pad inside the vortex cup improved vacuum generation efficiency. When the vortex cup properly maintained the non-contact air gap and generated an equivalent vacuum to achieve a sealing effect around the open gap of the suction pad, the combined head improved grip capacity and stabilized the non-contact environment. Furthermore, the flow patterns around the venturi chamber and the swirl inside the vortex cup were analyzed based on the design elements of each module. In a module that integrated some of the venturi’s features internally, increased air consumption of the vortex cup was required than that of the venturi. However, it supported a wide range of non-contact grips. The coupled model effectively protected the vacuum suction features of the venturi suction pad in all non-contact environments in that range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.