Background The risk of posterior cage migration (PCM) exists when a fusion cage is used for transforaminal lumbar interbody fusion (TLIF). This complication is influenced by contact pressure between the endplate and the cage. Previous reports demonstrated that anteriorly located cages bore more load and had greater strain than posteriorly located cages. However, there have been no detailed reports on the correlation between cage positioning and PCM. Methods From March 2014 to October 2015, we reviewed 953 patients receiving open transforaminal lumbar interbody fusion (TLIF) and bilateral pedicle screw instrumentation. One hundred patients without PCM were randomly sampled as the control group. Postoperative sagittal and coronal cage positions in the disc space were evaluated with the ‘depth ratio’ and the ‘coronal ratio’. The demographic data of patients with and without PCM were compared to detect patient-related factors. Radiographic and cage related parameters, including cage position, preoperative disc height, preoperative spine stability, cage geometry, cage size, and height variance (= cage height – preoperative disc height) were compared between the PCM group and the control group. Univariate analyses and a multivariate logistic model were used to identify risk factors of PCM. Results Posterior cage migration occurred in 24 (2.52%) of 953 patients. The univariate and multivariate analyses revealed that those with a decreased depth ratio (OR, 9.78E-4; 95% CI, 9.69E-4 – 9.87E-4; p < 0.001) and height variance (OR, 0.757, 95% CI, 0.575–0997, p = 0.048) had a significantly higher risk of developing PCM. Conclusions Our results verified that posteriorly located cages and undersized cages are more prone to developing PCM, which may aid surgeons in making optimal decisions during TLIF procedures.
OBJECTIVE Decreased bone mineral density as measured by dual-energy x-ray absorptiometry (DEXA) has been reported to be associated with cage subsidence following transforaminal lumbar interbody fusion (TLIF). However, DEXA is not often available or routinely performed before surgery. A novel MRI-based vertebral bone quality (VBQ) score has been developed and reported to be correlated with DEXA T-scores. The authors investigated the ability of the VBQ score to predict cage subsidence and other risk factors associated with this complication. METHODS In this retrospective study, the authors reviewed the records of patients who had undergone single-level TLIF from March 2014 to October 2015 and had a follow-up of more than 2 years. Cage subsidence was measured as postoperative disc height loss and was graded according to the system proposed by Marchi et al. The MRI-based VBQ score was measured on T1-weighted images. Univariable analysis and multivariable binary logistic regression analysis were performed. Ad hoc analysis with receiver operating characteristic curve analysis was performed to assess the predictive ability of the significant continuous variables. Additional analyses were used to determine the correlations between the VBQ score and T-scores and between the significant continuous variables and the amount of cage subsidence. RESULTS Among 242 patients eligible for study inclusion, 111 (45.87%) had cage subsidence after the index operation. Multivariable logistic regression analyses demonstrated that an increased VBQ score (OR 14.615 ± 0.377, p < 0.001), decreased depth ratio (OR 0.011 ± 1.796, p = 0.013), and the use of kidney-shaped cages instead of bullet-shaped cages (OR 2.766 ± 0.358, p = 0.008) were associated with increased cage subsidence. The VBQ score was shown to significantly predict cage subsidence with an accuracy of 85.6%. The VBQ score was found to be moderately correlated with DEXA T-scores of the total hip (r = −0.540, p < 0.001) and the lumbar spine (r = −0.546, p < 0.001). The amount of cage subsidence was moderately correlated with the VBQ score (r = 0.512, p < 0.001). CONCLUSIONS Increased VBQ scores, posteriorly placed cages, and kidney-shaped cages were risk factors for cage subsidence. The VBQ score was shown to be a good predictor of cage subsidence, was moderately correlated with DEXA T-scores for the total hip and lumbar spine, and also had a moderate correlation with the amount of cage subsidence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.