The purpose was to compare the findings of multi-detector computed tomography (MDCT) in prosthetic valve disorders using the operative findings as a gold standard. In a 3-year period, we prospectively enrolled 25 patients with 31 prosthetic heart valves. MDCT and transthoracic echocardiography (TTE) were done to evaluate pannus formation, prosthetic valve dysfunction, suture loosening (paravalvular leak) and pseudoaneurysm formation. Patients indicated for surgery received an operation within 1 week. The MDCT findings were compared with the operative findings. One patient with a Björk-Shiley valve could not be evaluated by MDCT due to a severe beam-hardening artifact; thus, the exclusion rate for MDCT was 3.2% (1/31). Prosthetic valve disorders were suspected in 12 patients by either MDCT or TTE. Six patients received an operation that included three redo aortic valve replacements, two redo mitral replacements and one Amplatzer ductal occluder occlusion of a mitral paravalvular leak. The concordance of MDCT for diagnosing and localizing prosthetic valve disorders and the surgical findings was 100%. Except for images impaired by severe beam-hardening artifacts, MDCT provides excellent delineation of prosthetic valve disorders.
ABSTRACT:The authors have developed novel hyaluronic acid (HA)-collagen sponge materials (HACSMs) composed of various ratios of bird feet (BF) and pig skin (PS) collagen that are fabricated employing a combination of freezing, lyophilizing, and 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) crosslinking methods. Morphology, swelling ratio, resistance to collagenase, thermal stability, tensile strength, and free amine index are determined to evaluate the physical-chemical properties of various HACSMs. Different BF: PS ratios directly vary with the physical-chemical properties of HACSMs and control their biodegradability for multiple uses. Resistance to collagenase, thermal stability, and tensile strength of HACSMs increases as the ratio of BF collagen increases. On the contrary, the higher swelling ratio, free amine index, and pore size occur in materials composed of higher ratios of PS collagen. A linear relationship between the decreased ratio of PS collagen and the increase in tensile strength and biostability are observed. The materials of B4P1HA (BF : PS : HA ¼ 4 : 1 : 0.2) exhibit the highest value of tensile strength, but no significant difference exists between B4P1HA and B5P0HA (BF : PS : HA ¼ 5 : 0 : 0.2). These phenomena should be closely related to the BF collagen which contains a higher amount of carboxyl groups of glutamic or aspartic acid residues and forms more amine bonds under EDC cross-linking *Author to whom correspondence should be addressed. E-mail: nitrite.tw@gmail.com when compared to PS collagen. However, these results suggest that the B4P1HA and B5P0HA materials should be produced according to highest bio-stability and mechanical strength and, furthermore they may be suitable for artificial skin or drug delivery applications.
JOURNAL OF BIOMATERIALS APPLICATIONS
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.