A differential reproducing kernel (DRK) interpolation-based collocation method is developed for solving partial differential equations governing a certain physical problem. The novelty of this method is that we construct a set of differential reproducing conditions to determine the shape functions of derivatives of the DRK interpolation function, without directly differentiating the DRK interpolation function. In addition, the shape function of the DRK interpolation function at each sampling node is separated into a primitive function processing Kronecker delta properties and an enrichment function constituting reproducing conditions, so that the nodal interpolation properties are satisfied. A point collocation method based on the present DRK interpolation is developed for the analysis of one-dimensional bar problems, two-dimensional potential problems, and plane problems of elastic solids. It is shown that the present DRK interpolation-based collocation method is indeed a truly meshless approach, with excellent accuracy and fast convergence rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.