A 4.1‐inch flexible QVGA AMOLED display with microcrystalline silicon (μc‐Si:H) TFTs backplane on colorless polyamide (PI) substrate is demonstrated. The PI substrate has the features of high Tg (∼350°C) and high light transmittance (∼90%). The bottom‐gate μc‐Si:H TFTs backplane is fabricated at 200°C by a conventional (13.56 MHz) plasma‐enhanced chemical vapor deposition (PECVD) system. The flexible μc‐Si:H TFTs backplane shows better electrical stability, flexibility, and uniformity.
Influences of silicon nitride (SiNx) films on the electrical performances of hydrogenated amorphous silicon thin film transistors (a-Si : H TFTs) are studied. Relatively low temperature (200 °C) SiNx films are prepared by plasma enhanced chemical vapour deposition at different radio-frequency powers. Results indicate that the SiNx films at a radio-frequency power of 340 W (Power density = 1.96 × 10−1 W cm−2) are near-stoichiometric and have better interface quality. Therefore, a-Si : H TFTs with this SiNx gate dielectric layer have a high field effect mobility and sustain the bias stress. The field effect mobility is 0.59 cm2 V−1 s−1 and the threshold voltage shift after a constant voltage stress (CVS) for 2.8 h is 3.18 V. The electrical degradation mechanism of a-Si : H TFTs is studied from the capacitance–voltage measurement. The degradation of the a-Si : H TFT after CVS is due to the defect generation in the SiNx gate dielectric and a-Si : H active layers. However, when the surface roughness of the SiNx film is poor, the degradation from the a-Si : H/SiNx interface is predominated. Therefore, if the SiNx film is used as a gate dielectric layer to fabricate a-Si : H TFTs, the surface roughness and chemical composition of the SiNx film should be considered simultaneously.
We analyzed the effect of electromechanical stressing on the electrical characteristics of hydrogenated amorphous silicon thin-film transistors. It had been shown that the TFTs, fabricated at 150 °C, respond to tension/compression by a rise/fall in electron mobility. In TFTs fabricated using the same process, a slight shift of threshold voltage was observed under prolonged high compressive strain and the gate leakage current slightly increases after ˜2% compressive strain. In general, the change of TFT performance due to pure mechanical straining is small in comparison to electrical gate-bias stressing. From the comparison among Maxwell stress (induced by electrical gate-bias stressing), mechanical stress (applied by bending), and drifting electrical force for passivated hydrogen atom, the most significant cause for the change of electrical characterization of a-Si:H TFTs should be the trapping charges inside the dielectric, under combined electrical and mechanical stressing. The mechanical stress does not act on Si-H bonds to drift hydrogen atoms, while it is mainly balanced by the rigid Si-Si networks in a-Si:H or a-SiNx. Therefore, mechanical stress has very little effect on the instability of low temperature processed a-Si:H TFTs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.