An oceanic radar altimeter such as TOPEX/Poseidon (T/P) is typically for observing elevation changes over the open oceans or large inland lakes/rivers, with limited applications over solid earth due to its large footprint and susceptibility to waveform contamination and slope effect. Here we demonstrate that it is possible to construct a long-term time series of glacier elevation change from T/P-series radar altimeters over two flat surfaces near a glacier terminus and an icefield (Sites A and B, with slopes of 2° and 0.8°) in Mt. Tanggula, Tibet, at elevations over 5400 m. We retracked radar waveforms using the subwaveform threshold algorithm, selected quality altimeter data (1/4 of the original) with nearly the same slope and adjusted the original elevations by fitting with a time-varying, 2nd order surface. The glacier elevation changes at the two sites from T/P (1993–2002) show seasonal elevation oscillations with linear rates at about −3 m/year and abnormal seasonal changes around the 1997–98 El Niño. Site A is over a deep valley in southern Tanggula. Its elevation dropped about 30 m over 1993–2002 (from T/P) and the glacier almost disappeared by 2016 (from altimeters and satellite images). Despite the sporadic Jason-2 and Jason-3 altimeter data, we also derived long-term rates of glacier elevation change over 1993–2017. Landsat-derived glacier area and elevation changes near the two sites confirm the rapid glacier thinning from the altimeters. The glacier meltwater near Site A supplied increasing source water to Chibuzhang Co west of Mt. Tanggula, contributing partially to its accelerated rising lake level. The glacier thinning at Site B (icefield) was correlated with the increased discharge of the Tuotuo River in eastern Mt. Tanggula, a source region of the Yangtze River. The successful detection of glacier thinning at the two sites shows that T/P-series altimeters can serve as a virtual station at a flat glacier spot to monitor long-term glacier elevation changes in connection to climate change. This virtual station concept is particularly useful for inaccessible glaciers, but its implementation faces two challenging issues: increasing the volume of quality altimeter data and improving the ranging accuracy over a targeted mountain glacier spot.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.