Human safety and well-being is threatened by microbes causing numerous infectious diseases resulting in a large number of deaths every year. Despite substantial progress in antimicrobial drugs, many infectious diseases remain difficult to treat. Antimicrobial polymers offer a promising antimicrobial strategy for fighting pathogens and have received considerable attention in both academic and industrial research. This mini-review presents the advances made in antimicrobial polymers since 2013. Antimicrobial mechanisms exhibiting either passive or active action and polymer material types containing bound or leaching antimicrobials are introduced. This article also addresses the applications of these antimicrobial polymers in the medical, food, and textile industries.
Far-infrared ray (FIR) radiation has been shown to be beneficial to human health; however, little scientific evidence of its mechanisms has been provided. In the present study, we investigated the effect of nonthermalenhanced FIR on the expression of calmodulin (Cam) protein and nitric oxide (NO) production by RAW 264.7 macrophages. Results indicated a significant increase in Cam protein in FIR-treated RAW 264.7 macrophages with or without the addition of lipopolysaccharide (LPS). In addition, the amount of NO was slightly higher but increased significantly in FIR plus LPS-treated RAW 264.7 macrophages. Data of the present study provide the first evidence to indicate the immunomodulatory properties of FIR through increasing Cam protein and NO production in RAW 264.7 macrophages.
A vast majority of alginate particles exist as spheres in most practical uses, and both the particle shape and size are the key factors dominating the applications and performance of alginate gels. Therefore, it becomes an issue of great interest to investigate the aspheric alginate particles. As the first step, various shaped alginate particles were formed due to various pH values in gelation solutions. It was experimentally demonstrated that a low pH brought about an oblate shape, and particularly lower concentrations of both alginate and divalent cations resulted in a flattened oblate shape. Ba2+acting as a cross-linker had a less impact on the particle shape than Ca2+due to a higher affinity in alginate intermolecular cross-linking. With a larger surface area, an oblate particle offered a higher release rate than a spheric one.
Highly invasive A431-III cells, which are derived from parental A431-P cells, were originally isolated by three successive passages through a Boyden chamber using a Matrigel-coated membrane support. The greater invasion potential shown by A431-III cells was due to their increased ability to spread ⁄ migrate, which was associated with enhanced MMP activity. The tumor progression events evoked by A431-P cells compared to A431-III cells may help identify useful strategies for evaluating the epithelial-mesenchymal transition (EMT) and these cell lines could be a reliable model for evaluating tumor metastasis events. Using this approach, we evaluated the effects of luteolin and quercetin using the A431-P ⁄ A431-III EMT model. These flavonoids reversed cadherin switching, downregulated EMT markers, and nullified the invasion ability of A431-III cells. Overexpression of MMP-9 resulted in induction of the EMT in A431-P cells and this could be reversed by treating with luteolin or quercetin. Cotreatment of A431-P and A431-III cells with epidermal growth factor (EGF) plus luteolin or quercetin resulted in a more epithelial-like morphology, led to reduced levels of EGF-induced markers of EMT, and caused the restoration of cell-cell junctions. Ecadherin was decreased by EGF, but increased by luteolin and quercetin. Our results suggest that luteolin and quercetin are potentially beneficial agents that target and prevent the occurrence of EMT in epidermal carcinoma cells. These chemicals also have the ability to attenuate tumor progression in A431-III cells. Luteolin and quercetin show inherent potential as chemopreventive ⁄ antineoplastic agents and do this by abating tumor progression through a reversal of
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.