Development of functional inorganic and transition metal compounds is usually based on ad hoc qualified guesses, with computational methods playing a lesser role than in drug discovery. A de novo evolutionary algorithm (EA) is presented that automatically generates transition metal complexes using a search space constrained around chemically meaningful structures assembled from three kinds of fragments: a part shared by all structures and typically containing the metal center itself, one or several parts consisting of ligand skeletons, and unconstrained parts that may grow and vary freely. In EA optimizations, using a cost-efficient fitness function based on a linear quantitative structure-activity relationship model for catalytic activity, we demonstrate the capabilities of the method by retracing the transition from the first-generation, phosphine-based Grubbs olefin metathesis catalysts to second-generation catalysts containing N-heterocyclic carbene ligands instead of phosphines. Moreover, DFT calculations on selected high-fitness, last-generation structures from these evolutionary experiments suggest that, in terms of catalytic activity, the structures arrived at by virtual evolution alone compare favorably with existing, highly active catalysts. The structures from the evolution experiments are, however, complex and probably difficult to synthesize, but a set of manually simplified variations thereof might form the leads for a new generation of Grubbs catalysts.
Atrial fibrillation (AF) is a common cardiac arrhythmia and a major risk factor for stroke, heart failure, and premature death. The pathogenesis of AF remains poorly understood, which contributes to the current lack of highly effective treatments. To understand the genetic variation and biology underlying AF, we undertook a genome-wide association study (GWAS) of 6,337 AF individuals and 61,607 AF-free individuals from Norway, including replication in an additional 30,679 AF individuals and 278,895 AF-free individuals. Through genotyping and dense imputation mapping from whole-genome sequencing, we tested almost nine million genetic variants across the genome and identified seven risk loci, including two novel loci. One novel locus (lead single-nucleotide variant [SNV] rs12614435; p ¼ 6.76 3 10 À18 ) comprised intronic and several highly correlated missense variants situated in the I-, A-, and M-bands of titin, which is the largest protein in humans and responsible for the passive elasticity of heart and skeletal muscle. The other novel locus (lead SNV rs56202902; p ¼ 1.54 3 10 À11 ) covered a large, gene-dense chromosome 1 region that has previously been linked to cardiac conduction. Pathway and functional enrichment analyses suggested that many AF-associated genetic variants act through a mechanism of impaired muscle cell differentiation and tissue formation during fetal heart development.
To what extent is the genetic architecture of schizophrenia shared with cortical brain surface area and thickness?Findings: The analysis of independent genome-wide association study datasets revealed that 95% of the genetic variants associated with total cortical surface area and all variants associated with average cortical thickness are also associated with the genetic risk of schizophrenia, despite nonsignificant genetic correlations.
Meaning:The amount of shared genetic variants between schizophrenia and cortical brain structure suggests overlapping molecular genetic mechanisms between cortical development and schizophrenia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.