Lignocellulose is a kind of renewable bioresource containing abundant polysaccharides, which can be used for biochemicals and biofuels production. However, the complex structure hinders the final efficiency of lignocellulosic biorefinery. This review comprehensively summarizes the hydrolases and typical microorganisms for lignocellulosic degradation. Moreover, the commonly used bioprocesses for lignocellulosic biorefinery are also discussed, including separated hydrolysis and fermentation, simultaneous saccharification and fermentation and consolidated bioprocessing. Among these methods, construction of microbial co-culturing systems via consolidated bioprocessing is regarded as a potential strategy to efficiently produce biochemicals and biofuels, providing theoretical direction for constructing efficient and stable biorefinery process system in the future.
Whole genome sequencing of
Riemerella anatipestifer
isolate RCAD0122 revealed a chromosomally-located β-lactamases gene,
bla
RAA-1
, which encoded a novel class A extended-spectrum β-lactamases (ESBL), RAA-1. The RAA-1 shared ≤ 65% amino acid sequence identity with other characterized β-lactamases. The kinetic assay of native purified RAA-1 revealed ESBL-like hydrolysis activity. Furthermore,
bla
RAA-1
could be transferred to a homologous strain by natural transformation. However, the epidemiological study showed that the
bla
RAA-1
gene is not prevalent currently.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.