With the development of space laser communication and the planned deployment of satellite Internet constellations, there is a growing demand for microminiature laser communication terminals. To meet the requirements of size, weight and power (SWaP), miniaturized terminals require smaller drive components to complete on-orbit scanning and capture, which must be fast and efficient to enable satellite laser communication networks. These miniaturized laser communication terminals are highly susceptible to the impact of the initial pointing accuracy of the laser beam and microvibrations of the satellite platform. Therefore, this paper proposes a laser scanning-capture model based on a Micro-electromechanical Systems (MEMS) micromirror that can provide a fast, large-scale scanning analysis. A scanning overlap factor is introduced to improve the capture probability under the influence of microvibrations. Finally, experimental analysis was carried out to verify the effectiveness of the proposed model, which can establish a theoretical basis for future ultra-long-distance microspace laser communication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.