The normalized difference vegetation index (NDVI) is widely used in remote sensing to monitor plant growth and chlorophyll levels. Usually, a multispectral camera (MSC) or hyperspectral camera (HSC) is required to obtain the near-infrared (NIR) and red bands for calculating NDVI. However, these cameras are expensive, heavy, difficult to geo-reference, and require professional training in imaging and data processing. On the other hand, the RGBN camera (NIR sensitive RGB camera, simply modified from standard RGB cameras by removing the NIR rejection filter) have also been explored to measure NDVI, but the results did not exactly match the NDVI from the MSC or HSC solutions. This study demonstrates an improved NDVI estimation method with an RGBN camera-based imaging system (Ncam) and machine learning algorithms. The Ncam consisted of an RGBN camera, a filter, and a microcontroller with a total cost of only $70 ~ 85. This new NDVI estimation solution was compared with a high-end hyperspectral camera in an experiment with corn plants under different nitrogen and water treatments. The results showed that the Ncam with two-band-pass filter achieved high performance (R2 = 0.96, RMSE = 0.0079) at estimating NDVI with the machine learning model. Additional tests showed that besides NDVI, this low-cost Ncam was also capable of predicting corn plant nitrogen contents precisely. Thus, Ncam is a potential option for MSC and HSC in plant phenotyping projects.
Portable devices for measuring plant physiological features with their isolated measuring chamber are playing an increasingly important role in plant phenotyping. However, currently available commercial devices of this type, such as soil plant analysis development (SPAD) meter and spectrometer, are dot meters that only measure a small region of the leaf, which does not perfectly represent the highly varied leaf surface. This study developed a portable and high-resolution multispectral imager (named LeafScope) to in-vivo image a whole leaf of dicotyledon plants while blocking the ambient light. The hardware system is comprised of a monochrome camera, an imaging chamber, a lightbox with different bands of light-emitting diodes (LEDs) array, and a microcontroller. During measuring, the device presses the leaf to lay it flat in the imaging chamber and acquires multiple images while alternating the LED bands within seconds in a certain order. The results of an experiment with soybean plants clearly showed the effect of nitrogen and water treatments as well as the genotype differences by the color and morphological features from image processing. We conclude that the low cost and easy to use LeafScope can provide promising imaging quality for dicotyledon plants, so it has great potential to be used in plant phenotyping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.