Enormous effort has been put to the detection and recognition of various heavy metal ions due to their involvement in serious environmental pollution and many major diseases. The present work has developed a single fluorescent sensor ensemble that can distinguish and identify a variety of heavy metal ions. A pyrene-based fluorophore (PB) containing a metal ion receptor group was specially designed and synthesized. Anionic surfactant sodium dodecyl sulfate (SDS) assemblies can effectively adjust its fluorescence behavior. The selected binary ensemble based on PB/SDS assemblies can exhibit multiple emission bands and provide wavelength-based cross-reactive responses to a series of metal ions to realize pattern recognition ability. The combination of surfactant assembly modulation and the receptor for metal ions empowers the present sensor ensemble with strong discrimination power, which could well differentiate 13 metal ions, including Cu, Co, Ni, Cr, Hg, Fe, Zn, Cd, Al, Pb, Ca, Mg, and Ba. Moreover, this single sensing ensemble could be further applied for identifying different brands of drinking water.
Fluorescent sensor arrays with pattern recognition ability have been widely used to detect and identify multiple chemically similar analytes. In the present work, two particular bispyrene fluorophores containing hydrophilic oligo(oxyethylene) spacer, 6 and 4, were synthesized, but one is with and the other is without cholesterol unit. Their ensembles with cationic surfactant (CTAB) assemblies realize multiple fluorescence responses to different metalloproteins, including hemoglobin, myoglobin, ferritin, cytochrome c, and alcohol dehydrogenase. The combination of fluorescence variation at monomer and excimer emission of the two binary sensor ensembles enables the mini sensor array to provide a specific fingerprint pattern to each metalloprotein. Linear discriminant analysis shows that the two-ensemble-sensor-based array could well discriminate the five tested metalloproteins. The present work realizes using a mini sensor array to accomplish discrimination of complex analytes like proteins. They also display a very high sensitivity to the tested metalloproteins with detection limits in the range of picomolar concentration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.