At present, with the popularity of Internet of things (IoT), a huge number of datasets generated by IoT devices are being uploaded to the cloud storage in remote data management service, but a series of security and privacy defects also arises, where one of the best ways for preventing data disclosure is encryption. Among them, searchable encryption (SE) is considered to be a very attractive cryptographic technology, since it allows users to search records in an encrypted form and to protect user’s data on an untrusted server. For the sake of enhancing search permission, attribute-based keyword search (ABKS) is an efficient method to provide secure search queries and fine-grained access authentications over ciphertexts. However, most existing ABKS schemes concentrate on single keyword search, which usually returns redundant and irrelevant results, so it would cost some unnecessary computation and communication resources. Furthermore, existing work in the literature mostly only supports unshared multiowner where a specific data owner owns each file, which is not able to satisfy more desired expressive search. In this work, we propose a novel attribute-based multikeyword search for shared multiowner (ABMKS-SM) primitive in IoT to achieve enhanced access control for users; meanwhile, it can support multikeyword search over ciphertexts and give a formal security analysis in the adaptive against chosen keyword attack (IND-CKA) model. Finally, we have also implemented this prototype to show efficiency when compared with some previous schemes.
In the area of searchable encryption, public key encryption with keyword search (PEKS) has been a critically important and promising technique which provides secure search over encrypted data in cloud computing. PEKS can protect user data privacy without affecting the usage of the data stored in the untrusted cloud server environment. However, most of the existing PEKS schemes concentrate on data users’ rich search functionalities, regardless of their search permission. Attribute-based encryption technology is a good method to solve the security issues, which provides fine-grained access control to the encrypted data. In this paper, we propose a privacy-preserving and efficient public key encryption with keyword search scheme by using the ciphertext-policy attribute-based encryption (CP-ABE) technique to support both fine-grained access control and keyword search over encrypted data simultaneously. We formalize the security definition, and prove that our scheme achieves selective indistinguishability security against an adaptive chosen keyword attack. Finally, we present the performance analysis in terms of theoretical analysis and experimental analysis, and demonstrate the efficiency of our scheme.
With the popularization of cloud computing, many business and individuals prefer to outsource their data to cloud in encrypted form to protect data confidentiality. However, how to search over encrypted data becomes a concern for users. To address this issue, searchable encryption is a novel cryptographic primitive that enables user to search queries over encrypted data stored on an untrusted server while guaranteeing the privacy of the data. Public key encryption with keyword search (PEKS) has received a lot of attention as an important branch. In this paper, we focus on the development of PEKS in cloud by providing a comprehensive research survey. From a technological viewpoint, the existing PEKS schemes can be classified into several variants: PEKS based on public key infrastructure, PEKS based on identity-based encryption, PEKS based on attribute-based encryption, PEKS based on predicate encryption, PEKS based on certificateless encryption, and PEKS supporting proxy re-encryption. Moreover, we propose some potential applications and valuable future research directions in PEKS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.