Aconitum episcopale Leveille is an important medicinal plant from the genus Aconitum L. of Ranunculaceae family and has been used as conventional medicine in Bai, Yi, and other ethnic groups of China. According to the available data and Ethno folk applications, A. episcopale is the only Aconitum species that has detoxifying and antialcoholic property. It can detoxify opium, especially the poisoning of Aconitum plants. Aconitum species have been widely used for their medicinal properties, and it is important to be noted that many of the species of this plant are reported to be toxic also. Distinguishing the species of this plant based on the morphology is a tough task and there are also no significant differences in the chemical composition. Therefore, before application of this plant for medicinal usage, it is very important to identify the species which could be life-threatening and exclude them. In this paper, the complete chloroplast (cp) genome sequence of A. episcopale was acquired by Illumina paired-end (PE) sequencing technology and compared with other species in the same family and genus. Herein, we report the complete cp genome of A. episcopale. The whole circular cp genome of A. episcopale has been found to be of 155,827 bp in size and contains a large single-copy region (LSC) of 86,452 bp, a small single-copy region (SSC) of 16,939 bp, and two inverted repeat regions (IRs) of 26,218 bp. The A. episcopale cp genome was found to be comprised of 132 genes, including 85 protein-coding genes (PCGs), 37 transfer RNA genes (tRNAs), eight ribosomal RNA genes (rRNAs), and two pseudogenes. A total of 20 genes contained introns, of which 14 genes contained a single intron and two genes had two introns. The chloroplast genome of A. episcopale contained 64 codons encoding 20 amino acids, with the number of codons encoding corresponding amino acids ranging from 22 to 1068. The Met and Trp amino acids have only one codon, and other amino acids had 2–6 codons. A total of 64 simple sequence repeats (SSRs) were identified, among which mononucleotide sequences accounted for the most. Phylogenetic analysis showed that A. episcopale is closely related with A. delavayi. Cumulatively the results of this study provided an essential theoretical basis for the molecular identification and phylogeny of A. episcopale.
The roots of Vicatia thibetica de Boiss are a kind of Chinese herb with homology of medicine and food. This is the first report showing the property of the extract of Vicatia thibetica de Boiss roots (HLB01) to extend the lifespan as well as promote the healthy parameters in Caenorhabditis elegans (C. elegans). For doxorubicin- (Doxo-) induced premature aging in adult mice, HLB01 counteracted the senescence-associated biomarkers, including P21 and γH2AX. Interestingly, HLB01 promoted the expression of collagen in C. elegans and mammalian cell systemically, which might be one of the essential factors to exert the antiaging effects. In addition, HLB01 was also found as a scavenger of free radicals, thereby performing the antioxidant ability. Lifespan extension by HLB01 was also dependent on DAF-16 and HSF-1 via oxidative stress resistance and heat stress resistance. Taken together, overall data suggested that HLB01 could extend the lifespan and healthspan of C. elegans and resist Doxo-induced senescence in mice via promoting the expression of collagen, antioxidant potential, and stress resistance.
Aconitum is an important medicinal group of the Ranunculaceae family and has been used as conventional medicine in Bai, Yi, and other ethnic groups of China. There are about 350 Aconitum species globally and about 170 species in China. It is challenging to identify the species in morphology, and the lack of molecular biology information hinders the identification and rational utilization of the germplasm of this genus. Therefore, it is necessary to increase the molecular data of Aconitum species. This paper acquired the complete chloroplast (CP) genome sequence of ten medicinal plants of Aconitum species from Yunnan by Illumina paired-end (PE) sequencing technology and compared it with other species in the same family and genus. These CP genomes exhibited typical circular quadripartite structure, and their sizes ranged from 155,475 (A. stylosum) to 155,921 bp (A. vilmoinianum), including a large single-copy region (LSC), a small single-copy region (SSC), and two inverted repeat regions (IRs). Their gene content, order, and GC content (38.1%) were similar. Moreover, their number of genes ranged from 129 (A. vilmoinianum) to 132 (A. ramulosum), including 83 to 85 protein-coding genes (PCGs), 37 tRNA genes (tRNAs), eight rRNA genes (rRNAs), and two pseudogenes. In addition, we performed repeated sequence analysis, genomic structure, and comparative analysis using 42 Aconitum chloroplast genomes, including ten Aconitum chloroplast genomes and other sequenced Aconitum species. A total of 48–79 simple sequence repeats (SSRs) and 17 to 77 long repeat sequences were identified. IR regions showed higher variability than the SSC region and LSC region. Seven mutational hotspots were screened out, including trnK-UUU-trnQ-UGG, psbD, ndhJ-ndhK, clpP, psbH-petB, ycf1, and trnA-UGC-trnI-GAU, respectively. The phylogenetic trees of ten Aconitum species and other Aconitum species revealed that the complete CP genome was beneficial in determining the complex phylogenetic relationships among Aconitum species. This study provides a potential molecular marker and genomic resource for phylogeny and species identification of Aconitum species and an important reference and basis for Ranunculaceae species identification and phylogeny.
Aconitum forrestii Stapf is an essential traditional Chinese medicine, and is beneficial in dispelling wind, removing dampness, warming, and relieving pain. However, its phylogenetic position of Aconitum is not accepted yet. In order to clarify the evolutionary relationship of A. forrestii , complete sequencing of chloroplast genome was carried out using Illumina sequencing technology. In total, the chloroplast genome was about 155,869 base pair (bp) in length and carried a typical tetrad structure that included a large single-copy, a small-single copy and two inverted repeat regions. A total of 132 genes were annotated, that included 85 protein -coding genes, 37 transfer RNA genes, eight ribosomal RNA genes, and two pseudogenes. The phylogenetic tree analysis indicated that Aconitum forrestii is closely related to Aconitum episcopale and Aconitum delavayi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.