Background: During a public health emergency, social media is a major conduit or vector for spreading health misinformation. Understanding the characteristics of health misinformation can be a premise for rebuking and purposefully correcting such misinformation on social media. Methods: Using samples of China's misinformation on social media related to the COVID-19 outbreak (N=547), the objective of this article was to illustrate the characteristics of said misinformation on social media in China by descriptive analysis, including the typology, the most-mentioned information, and a developmental timeline. Results: The results reveal that misinformation related to preventive and therapeutic methods is the most-mentioned type. Other types of misinformation associated with people's daily lives are also widespread. Moreover, cultural and social beliefs have an impact on the perception and propaganda of misinformation, and changes in the crisis situation are relevant to the type variance of misinformation.
Conclusion:Following research results, strategies of health communication for managing misinformation on social media are given, such as credible sources and expert sources. Also, traditional beliefs or perceptions play the vital role in health communication. To sum up, combating misinformation on social media is likely not a single effort to correct misinformation or to prevent its spread. Instead, scholars, journalists, educators, and citizens must collaboratively identify and correct any misinformation.
Silk has been widely used not only in the textile field but also in non-textile applications, which is composed of inner fibrous protein, named fibroin, and outer global protein, named sericin. Due to big differences, such as appearance, solubility, amino acid composition and amount of reactive groups, silk fibroin and sericin usually need to be separated before further process. The residual sericin may influence the molecular weight, structure, morphology and properties of silk fibroin, so that degumming of silk is important and necessary, not only in textile field but also in non-textile applications. Traditional textile degumming processes, including soap, alkali or both, could bring such problems as environmental damage, heavy use of water and energy, and damage to silk fibroin. Therefore, this review aims to present a systematic work on environmentally friendly and green degumming processes of raw silk, including art of green degumming process, quantitative and qualitative evaluation, influence of degumming on molecular weight, structure, morphology and properties of silk. It is anticipated that rational selection and design of environmentally friendly and green degumming process is quite important and meaningful, not only for textile application but also for non-textile application.
The main goal of this article is to study the diffusion mechanism of aqueous solutions and the swelling of cellulosic fibers in the silicone non-aqueous dyeing system via fluorescent labeling. Due to non-polar media only adsorbing on the surface of fiber, cellulosic fiber could not swell as a result of the non-polar media. However, because water molecules can diffuse into the non-crystalline region of the fiber, cellulosic fiber could swell by water which was dispersed or emulsified in a non-aqueous dyeing system. To study the diffusion mechanism of an aqueous solution in the siloxane non-aqueous dyeing system, siloxane non-aqueous media was first diffused to the cellulosic fiber because of its lower surface tension. The resulting aqueous solution took more time to diffuse the surface of the cellulosic fiber, because water molecules must penetrate the siloxane non-aqueous media film. Compared with the fluorescent intensity of the fiber surface, the siloxane film could be re-transferred to the dye bath under the emulsification of the surfactant and the mechanical force. Therefore, a longer diffusion time of the aqueous solution ensured the dyeing feasibility for cellulosic fiber in the non-aqueous dyeing system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.