The reef crests of the Jardines de la Reina National Park (JRNP) are largely formed by Acropora palmata, but colonies of A. cervicornis and the hybrid A. prolifera are also present. This study shows spatial distribution of colonies, thickets and live fragments of these species in the fore reefs. Snorkeling was used to perform the direct observations. The maximum diameter of 4,399 colonies of A. palmata was measured and the health of 3,546 colonies was evaluated. The same was done to 168 colonies of A. cervicornis and 104 colonies of A. prolifera. The influence of the location and marine currents on a number of living colonies of A. palmata was analyzed. For such purpose, reef crests were divided into segments of 500 m. The marine park was divided into two sectors: East and West. The Caballones Channel was used as the reference dividing line. The park was also divided into five reserve zones. We counted 7,276 live colonies of Acropora spp. 1.4% was A. prolifera, 3.5% A. cervicornis and 95.1% A. palmata. There were 104 thickets of A. palmata, ranging from eight to 12 colonies, and 3,495 fragments; 0.6% was A. cervicornis and the rest A. palmata (99.4%). In the East sector, 263 colonies (3.8% of the total), six thickets (5.8%) and 32 fragments (1%) of A. palmate were recorded. In the same sector, there were 11 fragments (50%) of A.cervicornis and two (2%) colonies of A. prolifera. Health of A. palmata was evaluated as good and not so good in the study area. Health of A. cervicornis was critical and health of A. prolifera was good in all five reserve zones. There was a significant increase in the number of colonies from east to west (Χ2 = 11.5, gl = 3.0, p = 0.009). This corroborates the existence of an important abundance differences between the eastern and the western region of the JRNP. A negative relationship was observed between the number of colonies and the distance from the channel (Χ2 = 65.0, df = 3.0, p < 0.001). The influence of the channel, for the live colonies of A. palmata is greater within the first 2,000 m. It then decreases until approximately 6,000 m, and no significant increase beyond. The orientation of the reef crests significantly influenced the abundance of the colonies (Χ2 = 15.5, df = 2.9, p = 0.001). The results presented here provide a baseline for future research on the status of the populations of Acropora spp., considering that there has been a certain recovery of the species A. palmata during the last 10–16 years. Given the current status of the populations of Acropora spp., conservation actions focusing A. cervicornis should be prioritized.
Through a nested suite of methods here we contrast the coexistence of different ecosystem states in a tropical coastal lagoon, the Laguna Larga, with increasing eutrophication stress between 2007 and 2009. Water temperature averaged 27.4°C in the lagoon and showed a slight positive trend during the study period. Salinity averaged 35.0±6.2, exhibiting high spatial and temporal variability, and also a slight positive trend in time. In contrast, dissolved oxygen showed a substantial decreasing trend (–0.83 ml L–1 y–1; –13.3% y–1) over the period, while nutrients increased dramatically, particularly total phosphorus (2.6 µM y–1), in both cases sustaining the progression of eutrophication in the lagoon during the three years we sampled. The Karydis nutrient load-based trophic index showed that the lagoon has a spatial pattern of increasing eutrophication from the sea and the outer sector (oligotrophic-mesotrophic) to the central (mesotrophic) and the inner sector (mesotrophic-eutrophic). Two ecosystem states were found within the lagoon. In the outer oligotrophic sector, the dominant primary producers were macroalgae, seagrasses and benthic diatoms, while mollusc assemblages were highly diverse. In the inner and central sectors (where trophic status increased toward the inner lagoon) a phytoplankton-dominated ecosystem was found where mollusc assemblages are less diverse. In spite of the progression of eutrophication in the lagoon, these two different ecosystems coexisted and remained unchanged during the study period. Apparently, the effect of water residence time, which increases dramatically toward the inner lagoon, dominated over that of nutrient loadings, which is relatively more homogeneously distributed along the lagoon. Therefore, we consider that actions that reduce the water residence time are likely the most effective management options for this and other similarly choked lagoons.
The reef crests of the Jardines de la Reina National Park are largely formed by Acropora palmata, but colonies of Acropora cervicornis and the hybrid Acropora prolifera are also present. This study shows spatial distribution of colonies, thickets and live fragments of these species in the fore reefs. Snorkeling was used to perform the direct observations. The maximum diameter of 4,399 colonies of A. palmata was measured and the health of 3,546 colonies was evaluated. The same was done to 168 colonies of A. cervicornis and 104 colonies of A. prolifera. The influence of the location and marine currents on a number of living colonies of A. palmata was analyzed. For such purpose, reef crests were divided into segments of 500 m. The marine park was divided into two sectors: East and West. The Caballones Channel was used as the reference dividing line. The park was also divided into five reserve zones. We counted 7,276 live colonies of Acropora spp. 1.4% was A. prolifera, 3.5% A. cervicornis and 95.1% A. palmata. There were 104 thickets of A. palmata, ranging from 8 to 12 colonies, and 3,495 fragments; 0.6% was A. cervicornis and the rest A. palmata (99.4%). In the East sector, 263 colonies (3.8 % of the total), 6 thickets (5.8 %) and 32 fragments (1 %) of A. palmate were recorded. In the same sector, there were 11 fragments (50 %) of A.cervicornis and 2 (2 %) colonies of A. prolifera. Health of A. palmata was evaluated as good and not so good in the study area. Health of A. cervicornis was critical and health of A. prolifera was good in all five reserve zones. There was a significant increase in the number of colonies from east to west (Χ2 = 11.5, gl = 3.0, p = 0.009). This corroborates the existence of a important abundance differences between the eastern and the western region of the JRNP. A negative relationship was observed between the number of colonies and the distance from the channel (Χ2 = 65.0, df = 3.0, p <0.001). The influence of the channel, for the live colonies of A. palmata is greater within the first 2000 m. It then decreases until approximately 6000 m, and no significant increase beyond. The orientation of the reef crests significantly influenced the abundance of the colonies (Χ2 = 15.5, df = 2.9, p = 0.001). The results presented here provide a baseline for future research on the status of the populations of Acropora spp., considering that there has been a certain recovery of the species A. palmata during the last 10 to 16 years. Given the current status of the populations of Acropora spp., conservation actions focusing A. cervicornis should be prioritized.
Adeonellopsis subsulcata (Smitt, 1873) (Bryozoa: Gymnolaemata) was first reported in Cuba on the marine terraces of the "Desembarco del Granma" National Park at the southeastern Cuban coast. Samples were collected using SCUBA gear at 12 m (19º 49' 48'' N, 77º 39' 11'' W) and 14 m deep (19º 50' 04'' N, 77º 42' 34'' W). Reference material has been included in the zoological collections
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.