Electro-active bacteria (EAB) can form biofilms on an anode (so-called bioanodes), and use the electrode as electron acceptor for oxidation of organics in wastewater. So far, bioanodes have mainly been investigated under a continuous anode potential, but intermittent anode potential has resulted in higher currents and different biofilm morphologies. However, little is known about how intermittent potential influences the electron balance in the anode compartment. In this study, we investigated electron balances of bioanodes at intermittent anode potential regimes. We used a transparent non-capacitive electrode that also allowed for in-situ quantification of the EAB using optical coherence tomography (OCT). We observed comparable current densities between continuous and intermittent bioanodes, and stored charge was similar for all the applied intermittent times (5 mC). Electron balances were further investigated by quantifying Extracellular Polymeric Substances (EPS), by analyzing the elemental composition of biomass, and by quantifying biofilm and planktonic cells. For all tested conditions, a charge balance of the anode compartment showed that more electrons were diverted to planktonic cells than biofilm. Besides, 27–43% of the total charge was detected as soluble EPS in intermittent bioanodes, whereas only 15% was found as soluble EPS in continuous bioanodes. The amount of proteins in the EPS of biofilms was higher for intermittent operated bioanodes (0.21 mg COD proteins mg COD biofilm −1 ) than for continuous operated bioanodes (0.05 mg COD proteins mg COD biofilm −1 ). OCT revealed patchy morphologies for biofilms under intermittent anode potential. Overall, this study helped understanding that the use of a non-capacitive electrode and intermittent anode potential deviated electrons to other processes other than electric current at the electrode by identifying electron sinks in the anolyte and quantifying the accumulation of electrons in the form of EPS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.