Pick & place yield performance is among of the most important parameters for electronic components assembly, especially for today's miniaturized packages. For very small devices such as small outline transistor (SOT) with carrier tape packaging system, sticking of device on cover tape was often observed, which is believed to be caused by accumulated electrostatic charge on the surfaces of device and cover tape. To improve pick & place yield performance, electrostatic charges and electrostatic forces should be minimized. In this work, pick and place tests were performed for SOT devices packaged in different packaging systems using different materials and cavity structures. The results show that the pick & place yield can be significantly improved by the right material selection and cavity structure optimization. The relationships among material property, cavity structure, electrostatic charge, electrostatic force, pick & place yield were correlated, based on experimental tests and finite elemental simulation. This work would provide test and simulation methodologies and guidelines for materials selection and cavity structure design for carrier tape packaging systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.