Circular RNAs (circRNAs) are widely expressed in eukaryotes. The genome-wide interactions between circRNAs and RNA-binding proteins (RBPs) can be probed from cross-linking immunoprecipitation with sequencing data. Therefore, computational methods have been developed for identifying RBP binding sites on circRNAs. Unfortunately, those computational methods often suffer from the low discriminative power of feature representations, numerical instability and poor scalability. To address those limitations, we propose a novel computational method called iCircRBP-DHN using deep hierarchical network for discriminating circRNA-RBP binding sites. The network architecture can be regarded as a deep multi-scale residual network followed by bidirectional gated recurrent units (BiGRUs) with the self-attention mechanism, which can simultaneously extract local and global contextual information. Meanwhile, we propose novel encoding schemes by integrating CircRNA2Vec and the K-tuple nucleotide frequency pattern to represent different degrees of nucleotide dependencies. To validate the effectiveness of our proposed iCircRBP-DHN, we compared its performance with other computational methods on 37 circRNAs datasets and 31 linear RNAs datasets, respectively. The experimental results reveal that iCircRBP-DHN can achieve superior performance over those state-of-the-art algorithms. Moreover, we perform motif analysis on circRNAs bound by those different RBPs, demonstrating that our proposed CircRNA2Vec encoding scheme can be promising. The iCircRBP-DHN method is made available at https://github.com/houzl3416/iCircRBP-DHN.
Protein-protein interactions (PPIs) govern cellular pathways and processes, by significantly influencing the functional expression of proteins. Therefore, accurate identification of protein-protein interaction binding sites has become a key step in the functional analysis of proteins. However, since most computational methods are designed based on biological features, there are no available protein language models to directly encode amino acid sequences into distributed vector representations to model their characteristics for protein-protein binding events. Moreover, the number of experimentally detected protein interaction sites is much smaller than that of protein-protein interactions or protein sites in protein complexes, resulting in unbalanced data sets that leave room for improvement in their performance. To address these problems, we develop an ensemble deep learning model (EDLM)-based protein-protein interaction (PPI) site identification method (EDLMPPI). Evaluation results show that EDLMPPI outperforms state-of-the-art techniques including several PPI site prediction models on three widely-used benchmark datasets including Dset_448, Dset_72, and Dset_164, which demonstrated that EDLMPPI is superior to those PPI site prediction models by nearly 10% in terms of average precision. In addition, the biological and interpretable analyses provide new insights into protein binding site identification and characterization mechanisms from different perspectives. The EDLMPPI webserver is available at http://www.edlmppi.top:5002/.
Identifying genome-wide binding events between circular RNAs (circRNAs) and RNA-binding proteins (RBPs) can greatly facilitate our understanding of functional mechanisms within circRNAs. Thanks to the development of cross-linked immunoprecipitation sequencing technology, large amounts of genome-wide circRNA binding event data have accumulated, providing opportunities for designing high-performance computational models to discriminate RBP interaction sites and thus to interpret the biological significance of circRNAs. Unfortunately, there are still no computational models sufficiently flexible to accommodate circRNAs from different data scales and with various degrees of feature representation. Here, we present HCRNet, a novel end-to-end framework for identification of circRNA-RBP binding events. To capture the hierarchical relationships, the multi-source biological information is fused to represent circRNAs, including various natural language sequence features. Furthermore, a deep temporal convolutional network incorporating global expectation pooling was developed to exploit the latent nucleotide dependencies in an exhaustive manner. We benchmarked HCRNet on 37 circRNA datasets and 31 linear RNA datasets to demonstrate the effectiveness of our proposed method. To evaluate further the model’s robustness, we performed HCRNet on a full-length dataset containing 740 circRNAs. Results indicate that HCRNet generally outperforms existing methods. In addition, motif analyses were conducted to exhibit the interpretability of HCRNet on circRNAs. All supporting source code and data can be downloaded from https://github.com/yangyn533/HCRNet and https://doi.org/10.6084/m9.figshare.16943722.v1. And the web server of HCRNet is publicly accessible at http://39.104.118.143:5001/.
Recommendation system plays an important role in the rapid development of micro-video sharing platform. Micro-video has rich modal features, such as visual, audio and text. It is of great significance to carry out personalized recommendation by integrating multi-modal features. However, most of the current multi-modal recommendation systems can only enrich the feature representation on the item side,while leads to poor learning of user preferences. To solve this problem, we propose a novel module named Learning the User’s Deeper Preferences(LUDP), which constructs the item-item modal similarity graph and user preference graph in each modality to explore the learning of item and user representation. Specifically, we construct item-item similar modalities graph using multi-modal features, the item ID embedding is propagated and aggregated on the graph to learn the latent structural information of items; The user preference graph is constructed through the historical interaction between the user and item, on which the multi-modal features are aggregated as the user’s preference for the modal. Finally, combining the two parts as auxiliary information enhances the user and item representation learned from the collaborative signals to learn deeper user preferences. Through a large number of experiments on two public datasets (TikTok, Movielens), our model is proved to be superior to the most advanced multi-modal recommendation methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.