We have previously demonstrated that nitroso-chloramphenicol (NO-CAP) in small concentrations causes the hydrolysis of isolated double stranded DNA in vitro and this action is blocked by sulfhydryl groups. The present study was designed to assess damage to isolated DNA as well as intact cells DNA and examine the protective effect of N-acetylcysteine (NAC). Using alkaline sucrose gradient sedimentation and the alkali elution technique of Kohn we were able to demonstrate DNA damage in Raji cells as well as phytohemagglutinin stimulated human lymphocytes after exposure to NO-CAP. Damage could be totally blocked by NAC. In preliminary studies we also observed that NAC protects bone marrow cells from the growth-inhibitory effects of chloramphenicol and thiamphenicol
We have previously demonstrated that cultured rat chloroleukemia cells, MIA C51, will terminally differentiate to macrophages when treated with rat lung-conditioned medium in vitro and in vivo. In the present study we fractionated rat monocyte-conditioned medium by ultrafiltration according to molecular size. The fraction with molecular weight (mol wt) 30 to 50 Kd containing partially purified granulocyte-macrophage colony-stimulating factor (GM-CSF) activity caused the differentiation of C51 cells to macrophages in vitro and in diffusion chambers in vivo. Treatment of young rats with this fraction aborted the development of chloroleukemia from transplanted C51 cells. In contrast, the fraction with mol wt 10 to 30 Kd containing virtually all the G-CSF activity exhibited no differentiation activity either in vitro or in vivo. It is concluded that in this rat myelogenous leukemia model partially purified GM-CSF but not G-CSF contains the effector molecule(s) causing terminal differentiation of C51 cells and tumor cell rejection.
To explore the potential role of some bacterial metabolites of chloramphenicol (CAP) in CAP-induced hematotoxicity, we examined their cytotoxic effects on bone marrow cells in vitro using a number of cytotoxicity parameters. Among the metabolites tested, dehydro-CAP (DHCAP) and p-nitrophenyl-2-amino-3 hydroxypropanone-HCI (NPAP) were more toxic than CAP. DHCAP was at least as toxic as nitroso-CAP. At concentrations of less than or equal to 10(-4) mol/L, DHCAP caused total irreversible inhibition of myeloid colony (CFU-GM) growth and 80% inhibition of DNA synthesis in human bone marrow. Incubation of human bone marrow cells with 10(-4) mol/L nitroso-CAP or DHCAP for 24 hours resulted in 75% and 65% cell death respectively. Although DHCAP was 10- to 20-fold more cytotoxic than CAP, it was only one third as effective in inhibiting mitochondrial protein synthesis, indicating that DHCAP exerts its toxic effect by alternate mechanisms. The cytotoxicity of DHCAP and its relative stability, compared to the unstable nitroso CAP, suggest that this bacterial metabolite of CAP, and possibly others, may play a significant role in CAP-induced hematotoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.