This study discusses a new coating method to protect 316L stainless steel (SS) from pitting corrosion in high chloride environments. The SS surface was coated using a simple, eco-friendly method, and sunflower oil (SunFO) was used as a base coating and binder for molybdenum disulfide (MoS2). The coated surface was observed using scanning electron microscopy (SEM) with an energy dispersive spectrometer (EDS) and X-ray diffraction (XRD). Corrosion behavior was examined by open-circuit potential (OCP) measurement and electrochemical impedance spectroscopy (EIS) in an 3.5% NaCl solution. The SunFO coating with MoS2 showed the highest corrosion resistance and coating durability during the immersion time relative to the SunFO coating and bare 316L SS. The increased corrosion resistance is thought to be because of the interactions with the aggregations of the SunFO lamellar structure and MoS2 in the coating film, which acted as a high order layer barrier providing protection from the metals to electrolytes.
Scandium(III) triflate is an excellent catalyst in the von Pechmann condensation. The solvent-free catalytic reactions proceed smoothly with a range of phenols and b-ketoesters in the presence of 10 mol% scandium(III) triflate at 80 C. This simple method affords various 4-substituted coumarins in good to excellent yield and is superior to the classical method in several aspects: solventfree conditions, short reaction times, a decreased catalyst loading, a mild reaction temperature, and an easy workup.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.