The pull vector is a jet observable sensitive to the distribution of soft radiation controlled by the color flow in a collider event. We present calculations to leading order in the soft and collinear limits for the pull vector measured between pairs of jets that do not form a color-singlet dipole. Our calculations are presented within the context of e + e − → three jets events, on which pull is measured between the two subleading jets. A subset of these calculations can be re-interpreted as a bottom-anti-bottom quark jet pair in a color octet configuration, which can be a background to Higgs production at large boost. We also present a universal expression for the pull distribution in the high-boost and small jet radius limit. This distribution is controlled by color SU(3) quadratic Casimirs that arise from product representations of pairs of QCD jets.
A high-energy muon collider with center-of-mass energy around and above 10 TeV is also a vector boson fusion (VBF) machine, due to the significant virtual electroweak (EW) gauge boson content of high-energy muon beams. This feature, together with the clean environment, makes it an ideal collider to search for TeV-scale axion-like particles (ALP) coupling to Standard Model EW gauge bosons, which current and other future colliders have limited sensitivities to. We present detailed analyses of heavy ALP searches in both the VBF and associated production channels at a muon collider with different running benchmarks. We also show projected constraints on the ALP couplings in the effective field theory, including an operator with its coefficient not determined by the mixed Peccei-Quinn anomaly. We demonstrate that a muon collider could probe new ALP parameter space and push the sensitivities of the couplings between the ALP and EW gauge bosons by one order of magnitude compared to HL-LHC. The projected limits and search strategies for ALPs could also be applied to other types of resonances coupling to EW gauge bosons.
A high-energy muon collider with center-of-mass energy around and above 10 TeV is also a vector boson fusion (VBF) machine, due to the significant virtual electroweak (EW) gauge boson content of high-energy muon beams. This feature, together with the clean environment, makes it an ideal collider to search for TeV-scale axion-like particles (ALP) coupling to Standard Model EW gauge bosons, which current and other future colliders have limited sensitivities to. We present detailed analyses of heavy ALP searches in both the VBF and associated production channels at a muon collider with different running benchmarks. We also show projected constraints on the ALP couplings in the effective field theory, including an operator with its coefficient not determined by the mixed Peccei-Quinn anomaly. We demonstrate that a muon collider could probe new ALP parameter space and push the sensitivities of the couplings between the ALP and EW gauge bosons by one order of magnitude compared to HL-LHC. The projected limits and search strategies for ALPs could also be applied to other types of resonances coupling to EW gauge bosons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.