In this paper, a splitting Crank–Nicolson (SC-N) scheme with intrinsic parallelism is proposed for parabolic equations. The new algorithm splits the Crank–Nicolson scheme into two domain decomposition methods, each one is applied to compute the values at (n + 1)th time level by use of known numerical solutions at n-th time level, respectively. Then, the average of the above two values is chosen to be the numerical solutions at (n + 1)th time level. The new algorithm obtains accuracy of the Crank–Nicolson scheme while maintaining parallelism and unconditional stability. This algorithm can be extended to solve two-dimensional parabolic equations by alternating direction implicit (ADI) technique. Numerical experiments illustrate the accuracy and efficiency of the new algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.