This paper presents a radial basis function prediction model improved by differential evolution algorithm for coking energy consumption process, which is very difficult to get online and real time because of the complex process. In the energy consumption prediction model, target flue temperature, flue suction, water content, volatile coal and coking time are considered as input variables, and coking energy consumption as output variables. To overcome the shortcomings of radial basis function network, such as poor learning ability and slow convergence speed, the energy consumption prediction model optimized by differential evolution algorithm is improved. Using the strong global search ability of differential evolution algorithm, the center value, width and output weight of the basis function in radial basis function network is obtained by differential evolution algorithm. Then the optimal values are taken as the center value, width and output weight of the of radial basis function neural network. The results show that the improved radial basis function prediction has higher accuracy, stability and training speed of the network. The radial basis function prediction model has great significance in reducing coking energy consumption, saving enterprise costs, increasing coke production and improving enterprise economic benefits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.