The propagation process of blasting vibration has always been a difficult problem affecting the stability of high slopes in open-pit mines. Taking the Jianshan Phosphorus Mine as the research background, combined with engineering geological investigation, field blasting test, blasting vibration monitoring, numerical simulation technology, and theoretical analysis, the three-dimensional dynamic stability of the adjacent high slope after blasting vibration was systematically studied. In our study, a small-diameter buffer shock-absorbing blasting technology near the slope was proposed, which greatly improved the production efficiency. Through regression analysis of a large amount of vibration test data, the law of blasting vibration propagation in Jianshan stope and Haifeng stope was obtained. In addition, by establishing four three-dimensional geomechanical numerical models, the slope’s own frequency, damping characteristics, and dynamic response acceleration distribution after detonation were studied, respectively. On the other hand, under the action of Ei Centro wave with 8-degree seismic intensity, the maximum total acceleration and maximum total displacement of the slope were calculated and analyzed. Both the explosion unloading of the 8-degree earthquake and the Ei Centro wave simulation results showed that the high slope near the Jianshan Phosphorus Mine was generally in a stable state. Thus, this study can provide technical support and theoretical guidance for mine blasting.
The numerical approach is a vital means for evaluating the stability of flawed rocks. In this paper, the extended non‐ordinary state‐based peridynamics (NOSB‐PD) theory is employed to simulate the fracture process of rocks containing two pre‐existing flaws. Two stress criteria, including the maximum tensile stress criterion and the Mohr–Coulomb criterion, are implemented into the NOSB‐PD numerical method to respectively judge the tensile and shear failure of rock materials. The effects of inclination angles and ligament angles on the crack initiation and coalescence modes for flawed rocks are investigated based on the numerical results. The numerical results are in good agreement with the previous experimental results. The fracture mechanism of flawed rocks is revealed based on the evolutionary distribution characteristics of the maximum principal stress field and shear stress field obtained by the extended NOSB‐PD theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.