Most models of disparity selectivity consider only the spatial properties of binocular cells. However, the temporal response is an integral component of real neurons' activities, and time-varying stimuli are often used in the experiments of disparity tuning. To understand the temporal dimension of V1 disparity representation, we incorporate a specific temporal response function into the disparity energy model and demonstrate that the binocular interaction of complex cells is separable into a Gabor disparity function and a positive time function. We then investigate how the model simple and complex cells respond to widely used time-varying stimuli, including motion-in-depth patterns, drifting gratings, moving bars, moving random-dot stereograms, and dynamic random-dot stereograms. It is found that both model simple and complex cells show more reliable disparity tuning to time-varying stimuli than to static stimuli, but similarities in the disparity tuning between simple and complex cells depend on the stimulus. Specifically, the disparity tuning curves of the two cell types are similar to each other for either drifting sinusoidal gratings or moving bars. In contrast, when the stimuli are dynamic random-dot stereograms, the disparity tuning of simple cells is highly variable, whereas the tuning of complex cells remains reliable. Moreover, cells with similar motion preferences in the two eyes cannot be truly tuned to motion in depth regardless of the stimulus types. These simulation results are consistent with a large body of extant physiological data, and provide some specific, testable predictions.
When two lines of different orientations are combined in regular stereograms, the orientation of the resulting line is different from those of the monocular lines. In this study we investigate the percept elicited by orientation disparity in Panum's limiting case. A variant of Panum's limiting case was designed to include orientation disparity. The single line in one half-image tilted leftwards. One of the double lines in the other half-image was parallel to the single line, while the other one tilted rightwards with obliquity one third that of the single line. In this stimulus configuration, if the single line in one half-image fuses with both lines in the other half-image at the same time, both of the two lines perceived after fusion should tilt leftwards. If double fusion does not happen, the two lines should tilt leftwards and rightwards respectively. The results of this study are in agreement with the latter prediction, which implies that double fusion does not occur in this variant of Panum's limiting case.
The aim of this study was to explore the relationship between hepatitis B virus (HBV) core antigen (HBc) mutations and the post-operative prognosis of HBV-related hepatocellular carcinoma (HCC). In total, 98 patients suffering from HBV-related HCC and treated with surgery were enrolled, with a 48 month follow-up. The preCore/Core region of the HBV genome from tumour tissue (TT) and paired adjacent non-tumour tissue (ANTT) of these patients was sequenced, and a phylogenetic tree was reconstructed. The correlations between the viral features and evolutionary divergence of preCore/Core amino acid sequences from 67 paired TTs and ANTTs were analysed. Cox proportional hazard model analysis was applied for post-operative hazard risk evaluation. Phylogenetic analysis revealed that all of the sequences were ascribed to genotype C. The evolutionary divergence of amino acid sequences from matched TTs and ANTTs was significantly negatively correlated with serum and intrahepatic HBV DNA levels. Multivariate analysis showed that the HBc E77 mutation was associated with shorter overall survival, and HBc S87 and P156 mutations were independent risk factors for relapse. Furthermore, in contrast to with patients without the S87 mutation, no correlation was observed between serum HBV DNA and intrahepatic HBV DNA in HCC patients with the S87 mutation. Analysis of the intrahepatic sequence may advance our understanding of viral status; thus, it is useful for prognosis prediction for HBV-related HCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.