SummaryIn Arabidopsis, two floral homeotic genes APETALA2 (AP2) and AGAMOUS (AG) specify the identities of perianth and reproductive organs, respectively, in flower development. The two genes act antagonistically to restrict each other to their proper domains of action within the floral meristem. In addition to AG, which antagonizes AP2, miR172, a microRNA, serves as a negative regulator of AP2. In this study, we showed that AG and miR172 have distinct functions in flower development and that they largely act independently in the negative regulation of AP2. We uncovered functions of miR172-mediated repression of AP2 in the regulation of floral stem cells and in the delineation of the expression domain of another class of floral homeotic genes. Given the antiquity of miR172 in land plants, our findings have implications for the recruitment of a microRNA in the building of a flower in evolution.
Floral patterning and morphogenesis are controlled by many transcription factors including floral homeotic proteins, by which floral organ identity is determined. Recent studies have uncovered widespread regulation of transcription factors by microRNAs (miRNAs), ~21-nucleotide noncoding RNAs that regulate protein-coding RNAs through transcript cleavage and/or translational inhibition. The regulation of the floral homeotic gene APETALA2 (AP2) by miR172 is crucial for normal Arabidopsis flower development and is likely to be conserved across plant species. Here we probe the activity of the AP2/miR172 regulatory circuit in a heterologous Solanaceae species, Nicotiana benthamiana. We generated transgenic N. benthamiana lines expressing Arabidopsis wild type AP2 (35S∷AP2), miR172-resistant AP2 mutant (35S∷AP2m3) and MIR172a-1 (35S∷MIR172) under the control of the cauliflower mosaic virus 35S promoter. 35S∷AP2m3 plants accumulated high levels of AP2 mRNA and protein and exhibited floral patterning defects that included proliferation of numerous petals, stamens and carpels indicating loss of floral determinacy. On the other hand, nearly all 35S∷AP2 plants accumulated barely detectable levels of AP2 mRNA or protein and were essentially non-phenotypic. Overall, the data indicated that expression of the wild type Arabidopsis AP2 transgene was repressed at the mRNA level by an endogenous N. benthamiana miR172 homologue that could be detected using Arabidopsis miR172 probe. Interestingly, 35S∷MIR172 plants had sepal-to-petal transformations and/or more sepals and petals, suggesting interference with N. benthamiana normal floral homeotic gene function in perianth organs. Our studies uncover the potential utility of the Arabidopsis AP2/miR172 system as a tool for manipulation of floral architecture and flowering time in non-model plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.