This study focused on landslide susceptibility analysis mapping of the Xulong hydropower station reservoir, which is located in the upstream of Jinsha River, a rapidly uplifting region of the Tibetan Plateau region. Nine factors were employed as landslide conditioning factors in landslide susceptibility mapping. These factors included the slope angle, slope aspect, curvature, geology, distance-to-fault, distance-to-river, vegetation, bedrock uplift and annual precipitation. The rapid bedrock uplift factor was represented by the slope angle. The eight factors were processed with the information content model. Since this area has a significant vertical distribution law of precipitation, the annual precipitation factor was analyzed separately. The analytic hierarchy process weighting method was used to calculate the weights of nine factors. Thus, this study proposed a component approach to combine the normalized eight-factor results with the normalized annual precipitation distribution results. Subsequently, the results were plotted in geographic information system (GIS) and a landslide susceptibility map was produced. The evaluation accuracy analysis method was used as a validation approach. The landslide susceptibility classes were divided into four classes, including low, moderate, high and very high. The results show that the four susceptibility class ratios are 12.9%, 35.06%, 34.11%and 17.92% of the study area, respectively. The red belt in the high elevation area represents the very high susceptibility zones, which followed the vertical distribution law of precipitation. The prediction accuracy was 85.74%, which meant that the susceptibility map was confirmed to be reliable and reasonable. This susceptibility map may contribute to averting the landslide risk in the future construction of the Xulong hydropower station.
In this study, the K-means algorithm based on particle swarm optimization (K-PSO) and game theory are introduced to establish the quality evaluation model of a rock mass. Five evaluation factors were considered, i.e., uniaxial saturated compressive strength of rock, discontinuity spacing, acoustic velocity, rock quality designation (RQD), and integrity coefficient. The rock mass of an elevation adit at the abutment of Maji hydropower station was taken as a case study. The subjective weight of the evaluation factor was determined by the weighted least squares method, and the objective weight of the evaluation factor was determined by the entropy method. The combined weights of each influencing factor were determined by game theory to be 0.142, 0.179, 0.035, 0.116, and 0.108. The rock mass quality evaluation in the study area was analyzed by K-PSO algorithm. The results indicate that the K-PSO clustering results are almost the same as the evaluation results of the traditional basic quality (BQ) classification method and the widely used extension evaluation method and are consistent with the preliminary judgment of the expert field. The results are consistent with the field observation law. It is considered that the K-PSO clustering theory can reflect the engineering geological characteristics of the rock mass of the hydropower project in the rock mass quality evaluation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.