Despite the tremendous achievements of deep convolutional neural networks (CNNs) in many computer vision tasks, understanding how they actually work remains a significant challenge. In this paper, we propose a novel two-step understanding method, namely Salient Relevance (SR) map, which aims to shed light on how deep CNNs recognize images and learn features from areas, referred to as attention areas, therein. Our proposed method starts out with a layer-wise relevance propagation (LRP) step which estimates a pixelwise relevance map over the input image. Following, we construct a contextaware saliency map, SR map, from the LRP-generated map which predicts areas close to the foci of attention instead of isolated pixels that LRP reveals. In human visual system, information of regions is more important than of pixels in recognition. Consequently, our proposed approach closely simulates human recognition. Experimental results using the ILSVRC2012 validation dataset in conjunction with two well-established deep CNN models, AlexNet and VGG-16, clearly demonstrate that our proposed approach concisely identifies not only key pixels but also attention areas that contribute to the underlying neural network's comprehension of the given images. As such, our proposed SR map constitutes a convenient visual interface which unveils the visual attention of the network and reveals which type of objects the model has learned to recognize after training. The source code is available at https://github.com/Hey1Li/Salient-Relevance-Propagation.
In order to meet the low latency and high throughput requirements of data transmission in 5th generation (5G) New Radio (NR), it is necessary to minimize the low power encoding hardware latency on transmitter and achieve lower base station power consumption within a fixed transmission time interval (TTI). This paper investigates parallel design and implementation of 5G quasi-cyclic low-density parity-check (QC-LDPC) codes encoder. The designed QC-LDPC encoder employs a multi-channel parallel structure to obtain multiple parity check bits and thus reduce encoding latency significantly. The proposed encoder maps high parallelism encoding algorithms to a configurable circuit architecture, achieving flexibility and support for all 5G NR code length and code rate. The experimental results show that under the 800 MHz system frequency, the achieved data throughput ranges from 62 to 257.9 Gbps, and the maximum code length encoding time under base graph 1 (BG1) is only 33.75 ns, which is the critical encoding time of our proposed encoder. Finally, our proposed encoder was synthesized on SMIC 28 nm CMOS technology; the result confirmed the effectiveness and feasibility of our design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.