Maintenance and repairing in actual engineering for long-term used structures, such as pipelines and bridges, make structural damage detection indispensable, as an unanticipated damage may give rise to a disaster, leading to huge economic loss. A new approach for detecting structural damage using transmissibility together with hierarchical clustering and similarity analysis is proposed in this study. Transmissibility is derived from the structural dynamic responses characterizing the structural state. First, for damage detection analysis, hierarchical clustering analysis is adopted to discriminate the damaged scenarios from an unsupervised perspective, taking transmissibility as feature for discriminating damaged patterns from undamaged ones. This is unlike directly predicting the structural damage from the indicators manifestation, as sometimes this can be vague due to the small difference between damaged scenarios and the intact baseline. For comparison reasons, cosine similarity measure and distance measure are also adopted to draw out sensitive indicators, and correspondingly, these indicators will manifest in recognizing damaged patterns from the intact baseline. Finally, for verification purposes, simulated results on a 10-floor structure and experimental tests on a free-free beam are undertaken to check the suitability of the raised approach. The results of both studies are indicative of a good performance in detecting damage that might suggest potential application in actual engineering real life.
Detecting structural damage in operational conditions still encounters some difficulties, especially in early-stage, as environmental varieties impose challenges in real engineering applications and may require large computational efforts in the structural health monitoring and potential maintenance. Unlike conventional strategies employing frequency response function or response data, a damage detection methodology is addressed in this study by employing transmissibility functions that retains a strong interrelation with structural damage or deterioration, in order to avoid the measurement of excitation, together with principal component analysis that leads to reduction in computational costs. In this procedure, transmissibility is extracted from the structural responses and main features are selected by principal component analysis for less computational costs. Then, via distance measures damage indicators are constructed for both intact and damaged states, and finally a numerical simulation with a clamped-clamped beam and a four-story benchmark are adopted to verify the applicability of the proposed procedure. The results demonstrate a good performance in structural damage detection.
This study applied the kriging model and particle swarm optimization (PSO) algorithm for the dynamic model updating of bridge structures using the higher vibration modes under large-amplitude initial conditions. After addressing the higher mode identification theory using time-domain operational modal analysis, the kriging model is then established based on Latin hypercube sampling and regression analysis. The kriging model performs as a surrogate model for a complex finite element model in order to predict analytical responses. An objective function is established to express the relative difference between analytically predicted responses and experimentally measured ones, and the initial finite element (FE) model is hereinafter updated using the PSO algorithm. The Jalón viaduct—a concrete continuous railway bridge—is applied to verify the proposed approach. The results show that the kriging model can accurately predict the responses and reduce computational time as well.
A new transmissibility-based damage detection and quantification approach is proposed. Based on the operational modal analysis, the transmissibility is extracted from system responses and transmissibility coherence is defined and analyzed. Afterwards, a sensitive-damage indicator is defined in order to detect and identify the severity of damage and compared with an indicator developed by other authors. The proposed approach is validated on data from a physics-based numerical model as well as experimental data from a three-story aluminum frame structure. For both numerical simulation and experiment the results of the new indicator reveal a better performance than coherence measure proposed in Rizos et al., 2008, Rizos et al., 2002, Fassois and Sakellariou, 2007, especially when nonlinearity occurs, which might be further used in real engineering. The main contribution of this study is the construction of the relation between transmissibility coherence and frequency response function coherence and the construction of an effective indicator based on the transmissibility modal assurance criteria for damage (especially for minor nonlinearity) detection as well as quantification.
Summary In this paper, a damage‐detection approach using the Mahalanobis distance with structural forced dynamic response data, in the form of transmissibility, is proposed. Transmissibility, as a damage‐sensitive feature, varies in accordance with the damage level. Besides, Mahalanobis distance can distinguish the damaged structural state condition from the undamaged one by condensing the baseline data. For comparison reasons, the Mahalanobis distance results using transmissibility are compared with those using frequency response functions. The experiment results reveal quite a significant capacity for damage detection, and the comparison between the use of transmissibility and frequency response functions shows that, in both cases, the different damage scenarios could be well detected. Copyright © 2015 John Wiley & Sons, Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.