The serialized expansion of high-nuclear clusters usually includes the controlled variable method and changes only a single variable. However, changing both variables will greatly increase the complexity of the reaction simultaneously. Therefore, the use of a two-component regulation reaction is rare. Herein, we used a diacylhydrazone ligand (H 4 L 1 ) with multidentate chelating coordination sites for the reaction with Gd(NO 3 ) 3 •6H 2 O under solvothermal conditions to obtain an example of 16-nucleus discshaped cluster 1 with a brucite structure. The overall structure of cluster 1 can be regarded as an equilateral triangle, which is formed by three (L 1 ) 4− ions that can be regarded as "sides" and wrap the four-layer metal center Gd(III) ions. Notably, upon simultaneous regulation of the substituent of the ligand and the coordination anion, heptanuclear gadolinium cluster 2 was obtained. Cluster 2 can be regarded as a butterfly structure, which was formed by connecting two Gd 3 L 2 molecules that were not in the same plane and through the central Gd(III) ion as an intersection. Moreover, hexanuclear gadolinium cluster 3 was obtained by changing the ligand substituent and adding an auxiliary ligand. Cluster 3 can be regarded as a chair structure, which was composed of two molecules of diacylhydrazone ligand (L 2 ) 4− wrapping vacant cubane shared by four vertices. This study was the first to construct a series of high-nuclear gadolinium clusters through two-component regulation manipulation. The study of the magnetocaloric effect showed that the maximum values of −ΔS m for clusters 1−3 were 34.05, 29.04, and 24.32 J kg −1 K −1 , respectively, when T = 2 K and ΔH = 7 T.
Lanthanoid metal ions have large ionic radii, complex coordination modes, and easy distortion of coordination spheres, but the design and synthesis of high-nucleation lanthanoid clusters with high stability in solution (especially aqueous solution) are challenging. Herein, a diacylhydrazone ligand (H 2 L 1 ) with multidentate chelating coordination sites was used to react with Dy(OAc) 3 •4H 2 O under solvothermal conditions to obtain an example of a 34-nucleus crown-shaped dysprosium cluster [Dy 34 (L) 1). Structural analysis showed that the bisacylhydrazone ligand H 2 L 1 with polydentate chelate coordination sites could rapidly capture Dy III ions, thereby forming 34-nucleus crownshaped dysprosium cluster 1 following the out-to-in growth mechanism. Cluster 1 remained stable after immersion in solutions with different pH values (3−14) for 24 h. To the best of the authors' knowledge, high-nucleation lanthanoid clusters with excellent strong acid and base stability and water stability are very rare. Meanwhile, high-resolution electrospray mass spectrometry molecular ion peaks produced by cluster 1 were captured, which proved to be stable also in organic solvents. Magnetic research showed that cluster 1 exhibited frequency-dependent behavior. This work provides a new idea for designing and synthesizing high-nucleation lanthanoid clusters with high stability.
Hedyotis Diffusa Willd, used in Traditional Chinese Medicine, is a treatment for various diseases including cancer, owing to its mild effectiveness and low toxicity. The aim of this study was to identify the main anticancer components in Hedyotis Diffusa Willd, and explore mechanisms underlying their activity. Hedyotis Diffusa Willd was extracted and fractionated using ethyl acetate to obtain the H-Ethyl acetate fraction, which showed higher anticancer activity than the other fractions obtained against HepG2 cells with sulforhodamine B assays. The active component of the H-Ethyl acetate fraction was identified to be 1,3-dihydroxy-2-methylanthraquinone (DMQ) with much high inhibitory rate up to 48.9 ± 3.3% and selectivity rate up to 9.4 ± 4.5 folds (p<0.01) at 125 μmol/L. HepG2 cells treated with the fraction and DMQ visualized morphologically using light and fluorescence microscopy. Annexin V—fluorescein isothiocyanate / propidium iodide staining flow cytometry, DNA ladder and cell cycle distribution assays. Mechanistic studies showed up-regulation of caspase-3, -8, and -9 proteases activities (p<0.001), indicating involvement of mitochondrial apoptotic and death receptor pathways. Further studies revealed that reactive oxygen species in DMQ and the fraction treated HepG2 cells increased (p<0.01) while mitochondrial membrane potential reduced significantly (p<0.001) compared to the control by flow cytometry assays. Western blot analysis showed that Bax, p53, Fas, FasL, p21 and cytoplasmic cytochrome C were up-regulated (p<0.01), while Bcl-2, mitochondrial cytochrome C, cyclin E and CDK 2 were down-regulated dose-dependently (p<0.01). The reverse transcriptase-polymerase chain reaction showed that mRNA expressions of p53 and Bax increased (p<0.001) while that of Bcl-2 decreased (p<0.001). Pre-treatment with caspase-8 inhibitor Z-IETD-FMK, or caspase-9 inhibitor Z-LEHD-FMK, attenuated the growth-inhibitory and apoptosis-inducing effects of DMQ and the fraction on HepG2 cells. These results suggested that DMQ and the H-Ethyl acetate fraction of Hedyotis Diffusa Willd showed potential anticancer effects. Furthermore, the mechanisms of action may involve mitochondrial apoptotic and death receptor pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.