The exposed cameras of UAV can shake, shift, or even malfunction under the influence of harsh weather, while the add-on devices (Dupont lines) are very vulnerable to damage. We can place a lowcost T-OLED overlay around the camera to protect it, but this would also introduce image degradation issues. In particular, the temperature variations in the atmosphere can create mist that adsorbs to the T-OLED, which can cause secondary disasters (i.e., more severe image degradation) during the UAV's filming process. To solve the image degradation problem caused by overlaying T-OLEDs, in this paper we propose a new method to enhance the visual experience by enhancing the texture and color of images. Specifically, our method trains a lightweight network to estimate a low-rank affine grid on the input image, and then utilizes the grid to enhance the input image at block granularity. The advantages of our method are that no reference image is required and the loss function is developed from visual experience. In addition, our model can perform high-quality recovery of images of arbitrary resolution in real time. In the end, the limitations of our model and the collected datasets (including the daytime and nighttime scenes) are discussed.
Low-light image enhancement is a classical computer vision problem aiming to recover normal-exposure images from low-light images. However, convolutional neural networks commonly used in this field are good at sampling low-frequency local structural features in the spatial domain, which leads to unclear texture details of the reconstructed images. To alleviate this problem, we propose a novel module using the Fourier coefficients, which can recover high-quality texture details under the constraint of semantics in the frequency phase and supplement the spatial domain. In addition, we design a simple and efficient module for the image spatial domain using dilated convolutions with different receptive fields to alleviate the loss of detail caused by frequent downsampling. We integrate the above parts into an end-to-end dual branch network and design a novel loss committee and an adaptive fusion module to guide the network to flexibly combine spatial and frequency domain features to generate more pleasing visual effects. Finally, we evaluate the proposed network on public benchmarks. Extensive experimental results show that our method outperforms many existing state-of-the-art ones, showing outstanding performance and potential. We release our code at https://github.com/Zhuangyunliang/DPFNet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.