Autonomous car racing is a major challenge in robotics. It raises fundamental problems for classical approaches such as planning minimum-time trajectories under uncertain dynamics and controlling the car at the limits of its handling. Besides, the requirement of minimizing the lap time, which is a sparse objective, and the difficulty of collecting training data from human experts have also hindered researchers from directly applying learning-based approaches to solve the problem. In the present work, we propose a learning-based system for autonomous car racing by leveraging a high-fidelity physical car simulation, a course-progress proxy reward, and deep reinforcement learning. We deploy our system in Gran Turismo Sport, a world-leading car simulator known for its realistic physics simulation of different race cars and tracks, which is even used to recruit human race car drivers. Our trained policy achieves autonomous racing performance that goes beyond what had been achieved so far by the built-in AI, and at the same time, outperforms the fastest driver in a dataset of over 50,000 human players.
Autonomous, agile quadrotor flight raises fundamental challenges for robotics research in terms of perception, planning, learning, and control. A versatile and standardized platform is needed to accelerate research and let practitioners focus on the core problems. To this end, we present Agilicious, a codesigned hardware and software framework tailored to autonomous, agile quadrotor flight. It is completely open source and open hardware and supports both model-based and neural network–based controllers. Also, it provides high thrust-to-weight and torque-to-inertia ratios for agility, onboard vision sensors, graphics processing unit (GPU)–accelerated compute hardware for real-time perception and neural network inference, a real-time flight controller, and a versatile software stack. In contrast to existing frameworks, Agilicious offers a unique combination of flexible software stack and high-performance hardware. We compare Agilicious with prior works and demonstrate it on different agile tasks, using both model-based and neural network–based controllers. Our demonstrators include trajectory tracking at up to 5
g
and 70 kilometers per hour in a motion capture system, and vision-based acrobatic flight and obstacle avoidance in both structured and unstructured environments using solely onboard perception. Last, we demonstrate its use for hardware-in-the-loop simulation in virtual reality environments. Because of its versatility, we believe that Agilicious supports the next generation of scientific and industrial quadrotor research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.