The “three stages” division of coal spontaneous combustion is fuzzy and lacks adequate risk and warning levels corresponding to its divisions; additionally, the targeted prevention measures for each stage have not been described. To address the shortcomings of the “three stages” division, the “five stages” division was proposed to more clearly analyze the stage changes of the spontaneous combustion of coal. The “five stages” method divides the process of the spontaneous combustion of coal into five stages, including: the latent stage, heat accumulating stage, evaporation stage, active stage, and hypoxic stage. The critical point of each stage was determined using adiabatic oxidation experiments and programmed heat experiments. As the critical point of the latent stage, the temperature of zero activation energy is approximately 55–70°C. In the heat accumulating stage, the critical point is the temperature (approximately 90°C) where the external moisture of coal evaporates violently while the internal moisture of coal has not yet fully evaporated. During the evaporation stage, the temperature (approximately 105°C) where the internal moisture has evaporated completely represents the end of this stage and the start of the active stage (105–170°C). When the oxygen concentration drops to 5%, the spontaneous combustion of coal enters the hypoxic stage. Thus, an oxygen concentration of 5% represents the critical point of the start of the hypoxic stage (above 170°C). After the analysis of each stage, risk and warning levels were determined. Considering the major prevention measures of the spontaneous combustion of coal, a staged warning and disposal table was created.
The hard roof of coal mines has the characteristics of high hardness, good integrity, and large layer thickness, which leads to many ground control problems. To reveal the influence of a hard roof structure on the stress performance and coal pillar stability during mining operations, the 8,104 and 8,105 working faces in the Tongxin coal mine were considered as the research object to analyze the stress behavior during the working face advance. Numerical simulation software FLAC3D was used to establish the numerical model of the longwall face under hard roof conditions. The stress distribution laws and coal pillar stability under different roof strengths were analyzed so as to explain the impacts of the hard roof on the stress distribution at the working face. The results show that during the second face proceeding, the influence zone of the front abutment pressure under hard roof conditions is 6 m wider than that under soft roof conditions, and the bearing stress at the working face is 10.4 MPa higher. At the mining position, the plastic zone of the pillar under hard roof conditions is 11 m wider than that under soft roof conditions, and the peak vertical stress is 5.13 MPa higher than that under soft roof conditions. At 25 m ahead of the working face, the plastic zone of the pillar under hard roof conditions is 6 m wider than that under soft roof conditions, and the peak vertical stress is 24.84 MPa higher than that under soft roof conditions. Additional overburden pressure produced by the uncaved hard roof increased pillar stress and plastic zones. Therefore, the hard roof is the main cause of strong ground pressure behavior in the Tongxin coal mine. Aiming at the strong mine pressure behavior, it is suggested to adopt the pre-splitting technology to reduce the influence of the hard roof on mine pressure.
In the extra-thick coal seams and multi-layered hard roofs, the longwall hydraulic support yielding, coal face spalling, strong deformations of goaf-side entry, and severe ground pressure dynamic events typically occur at the longwall top coal caving longwall faces. Based on the Key strata theory an overburden caving model is proposed here to predict the multilayered hard strata behaviour. The proposed model together with the measured stress changes in coal seam and underground observations in Tongxin coal mine provides a new idea to analyse stress changes in coal and help to minimise rock bursts in the multi-layered hard rock ground. Using the proposed primary Key and the sub-Key strata units the model predicts the formation and instability of the overlying strata that leads to abrupt dynamic changes to the surrounding rock stress. The data obtained from the vertical stress monitoring in the 38 m wide coal pillar located adjacent to the longwall face indicates that the Key strata layers have a significant influence on ground behaviour. Sudden dynamically driven unloading of strata was caused by the first caving of the sub-Key strata while reloading of the vertical stress occurred when the goaf overhang of the sub-Key strata failed. Based on this findings several measures were recommended to minimise the undesirable dynamic occurrences including pre-split of the hard Key strata by blasting and using the energy consumption yielding reinforcement to support the damage prone gate road areas. Use of the numerical modelling simulations was suggested to improve the key theory accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.