The redeposition of pristine phosphorite plays an important role in phosphorus accumulation, which created reworked phosphorite extensively on the continental shelf. This paper, using geochemical analysis combined with data from petrology and diagenesis, focuses on the reconstruction of the formation processes of the Late Cretaceous Thaniyat phosphorite deposition in northwestern Saudi Arabia, which is a part of the famous large Neo-Tethys Ocean’s phosphorite deposit. The results of our study illustrate that the phosphorites represent the reworked products from the north, close to the edge of the Neo-Tethys Ocean’s shelf, where upwelling had accreted the pristine phosphorite. The reworked phosphatic grains were redeposited near the shore in sandstone, forming sandy phosphorite and on a carbonate platform and creating calcareous phosphorite. The microscale sedimentological and geochemical information hosted in the eroded phosphorite grains indicates that the source sediment, pristine phosphorite, occurred under a fluctuating geophysical condition and in a relatively limited geochemical environment. They were physically crushed and transported landward and deposited under oxic conditions, forming the Thaniyat phosphorites. Early diagenesis in the Thaniyat phosphorite was evidenced by recrystallization of the phosphate minerals, geochemical depletion, and C and O isotope excursion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.