Automated guided vehicles (AGVs) are widely used for material handling in warehouses and automated production lines due to their high efficiency and low cost. However, AGVs usually interact with each other because of the restricted capacity of the layout. Although many algorithms have been proposed to address the problem, most of them are inefficient for collision and deadlock avoidance in dynamic environments. This paper proposes a dynamic resource reservation (DRR) based method supporting time-efficient scheduling and collision avoidance of multiple AGVs. In this method, the layout is divided into square blocks with the same size that are abstracted as points in the undirected graph. In order to solve the collision and deadlock problem dynamically, the shared resource points of each vehicle are extracted from their guide paths in real time. Unlike the traditional approaches most of which adopt a static point occupation policy, DRR exploits dynamical reservations of shared resource points to change AGV movement states for avoiding collisions and deadlocks, resulting in better time efficiency. We jointly implement the algorithm on both central and local controllers. Extensive simulation results demonstrate the feasibility and efficiency of the proposed collision and deadlock prevention method. INDEX TERMS Automated guided vehicles, deadlock and collision prevention, resource reservation, shared resource points.
When the mobile robot performs certain motion tasks in complex environment, wheel slipping inevitably occurs due to the wet or icy road and other reasons, thus directly influences the motion control accuracy. To address unknown wheel longitudinal slipping problem for mobile robot, a RBF neural network approach based on whole model approximation is presented. The real-time data acquisition of inertial measure unit (IMU), encoders and other sensors is employed to get the mobile robot's position and orientation in the movement, which is applied to compensate the unknown bounds of the longitudinal slipping using the adaptive technique. Both the simulation and experimental results prove that the control scheme possesses good practical performance and realize the motion control with unknown longitudinal slipping. which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.