We study a functional with variable exponent, 1 ≤ p(x) ≤ 2, which provides a model for image denoising, enhancement, and restoration. The diffusion resulting from the proposed model is a combination of total variation (TV)-based regularization and Gaussian smoothing. The existence, uniqueness, and long-time behavior of the proposed model are established. Experimental results illustrate the effectiveness of the model in image restoration.
Abstract. We present a novel framework, namely AADMM, for acceleration of linearized alternating direction method of multipliers (ADMM). The basic idea of AADMM is to incorporate a multi-step acceleration scheme into linearized ADMM. We demonstrate that for solving a class of convex composite optimization with linear constraints, the rate of convergence of AADMM is better than that of linearized ADMM, in terms of their dependence on the Lipschitz constant of the smooth component. Moreover, AADMM is capable to deal with the situation when the feasible region is unbounded, as long as the corresponding saddle point problem has a solution. A backtracking algorithm is also proposed for practical performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.